{"title":"解析零点定理与有价域模型理论","authors":"Matthias Aschenbrenner, Ahmed Srhir","doi":"10.1002/mana.202200280","DOIUrl":null,"url":null,"abstract":"<p>We present a uniform framework for establishing Nullstellensätze for power series rings using quantifier elimination results for valued fields. As an application, we obtain Nullstellensätze for <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-adic power series (both formal and convergent) analogous to Rückert's complex and Risler's real Nullstellensatz, as well as a <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-adic analytic version of Hilbert's 17th Problem. Analogous statements for restricted power series, both real and <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-adic, are also considered.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202200280","citationCount":"0","resultStr":"{\"title\":\"Analytic Nullstellensätze and the model theory of valued fields\",\"authors\":\"Matthias Aschenbrenner, Ahmed Srhir\",\"doi\":\"10.1002/mana.202200280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a uniform framework for establishing Nullstellensätze for power series rings using quantifier elimination results for valued fields. As an application, we obtain Nullstellensätze for <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>-adic power series (both formal and convergent) analogous to Rückert's complex and Risler's real Nullstellensatz, as well as a <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>-adic analytic version of Hilbert's 17th Problem. Analogous statements for restricted power series, both real and <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>-adic, are also considered.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202200280\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202200280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202200280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analytic Nullstellensätze and the model theory of valued fields
We present a uniform framework for establishing Nullstellensätze for power series rings using quantifier elimination results for valued fields. As an application, we obtain Nullstellensätze for -adic power series (both formal and convergent) analogous to Rückert's complex and Risler's real Nullstellensatz, as well as a -adic analytic version of Hilbert's 17th Problem. Analogous statements for restricted power series, both real and -adic, are also considered.