James H. McVittie, David B. Wolfson, David A. Stephens
{"title":"综合右删失和长度偏右删失故障时间数据的生存函数 NPMLE:特性与应用","authors":"James H. McVittie, David B. Wolfson, David A. Stephens","doi":"10.1515/ijb-2023-0121","DOIUrl":null,"url":null,"abstract":"Many cohort studies in survival analysis have imbedded in them subcohorts consisting of incident cases and prevalent cases. Instead of analysing the data from the incident and prevalent cohorts alone, there are surely advantages to combining the data from these two subcohorts. In this paper, we discuss a survival function nonparametric maximum likelihood estimator (NPMLE) using both length-biased right-censored prevalent cohort data and right-censored incident cohort data. We establish the asymptotic properties of the survival function NPMLE and utilize the NPMLE to estimate the distribution for time spent in a Montreal area hospital.","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"56 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The survival function NPMLE for combined right-censored and length-biased right-censored failure time data: properties and applications\",\"authors\":\"James H. McVittie, David B. Wolfson, David A. Stephens\",\"doi\":\"10.1515/ijb-2023-0121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many cohort studies in survival analysis have imbedded in them subcohorts consisting of incident cases and prevalent cases. Instead of analysing the data from the incident and prevalent cohorts alone, there are surely advantages to combining the data from these two subcohorts. In this paper, we discuss a survival function nonparametric maximum likelihood estimator (NPMLE) using both length-biased right-censored prevalent cohort data and right-censored incident cohort data. We establish the asymptotic properties of the survival function NPMLE and utilize the NPMLE to estimate the distribution for time spent in a Montreal area hospital.\",\"PeriodicalId\":49058,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2023-0121\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2023-0121","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
The survival function NPMLE for combined right-censored and length-biased right-censored failure time data: properties and applications
Many cohort studies in survival analysis have imbedded in them subcohorts consisting of incident cases and prevalent cases. Instead of analysing the data from the incident and prevalent cohorts alone, there are surely advantages to combining the data from these two subcohorts. In this paper, we discuss a survival function nonparametric maximum likelihood estimator (NPMLE) using both length-biased right-censored prevalent cohort data and right-censored incident cohort data. We establish the asymptotic properties of the survival function NPMLE and utilize the NPMLE to estimate the distribution for time spent in a Montreal area hospital.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.