作为交易账本的比特币:可组合处理

IF 2.3 3区 计算机科学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Christian Badertscher, Ueli Maurer, Daniel Tschudi, Vassilis Zikas
{"title":"作为交易账本的比特币:可组合处理","authors":"Christian Badertscher, Ueli Maurer, Daniel Tschudi, Vassilis Zikas","doi":"10.1007/s00145-024-09493-7","DOIUrl":null,"url":null,"abstract":"<p>Bitcoin is one of the most prominent examples of a distributed cryptographic protocol that is extensively used in reality. Nonetheless, existing security proofs are property-based, and as such they do not support composition. In this work, we put forth a universally composable treatment of the Bitcoin protocol. We specify the goal that Bitcoin aims to achieve as an instance of a parameterizable ledger functionality and present a UC abstraction of the Bitcoin blockchain protocol. Our ideal functionality is weaker than the first proposed candidate by Kiayias, Zhou, and Zikas [EUROCRYPT’16], but unlike the latter suggestion, which is arguably not implementable by the UC Bitcoin protocol, we prove that the one proposed here is securely UC-realized by the protocol assuming access to a global clock, to model time-based executions, a random oracle, to model hash functions, and an idealized network, to model message dissemination. We further show how known property-based approaches can be cast as special instances of our treatment and how their underlying assumptions can be cast in UC as part of the setup functionalities and without restricting the environment or the adversary.\n</p>","PeriodicalId":54849,"journal":{"name":"Journal of Cryptology","volume":"10 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bitcoin as a Transaction Ledger: A Composable Treatment\",\"authors\":\"Christian Badertscher, Ueli Maurer, Daniel Tschudi, Vassilis Zikas\",\"doi\":\"10.1007/s00145-024-09493-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bitcoin is one of the most prominent examples of a distributed cryptographic protocol that is extensively used in reality. Nonetheless, existing security proofs are property-based, and as such they do not support composition. In this work, we put forth a universally composable treatment of the Bitcoin protocol. We specify the goal that Bitcoin aims to achieve as an instance of a parameterizable ledger functionality and present a UC abstraction of the Bitcoin blockchain protocol. Our ideal functionality is weaker than the first proposed candidate by Kiayias, Zhou, and Zikas [EUROCRYPT’16], but unlike the latter suggestion, which is arguably not implementable by the UC Bitcoin protocol, we prove that the one proposed here is securely UC-realized by the protocol assuming access to a global clock, to model time-based executions, a random oracle, to model hash functions, and an idealized network, to model message dissemination. We further show how known property-based approaches can be cast as special instances of our treatment and how their underlying assumptions can be cast in UC as part of the setup functionalities and without restricting the environment or the adversary.\\n</p>\",\"PeriodicalId\":54849,\"journal\":{\"name\":\"Journal of Cryptology\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cryptology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00145-024-09493-7\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cryptology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00145-024-09493-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

比特币是现实中广泛使用的分布式加密协议的最突出例子之一。然而,现有的安全证明都是基于属性的,因此不支持组合。在这项工作中,我们提出了比特币协议的通用可组合处理方法。我们将比特币旨在实现的目标指定为可参数化分类账功能的实例,并提出了比特币区块链协议的 UC 抽象。我们的理想功能弱于 Kiayias、Zhou 和 Zikas [EUROCRYPT'16]首次提出的候选功能,但与后者不同的是,后者可以说是无法通过 UC 比特币协议实现的,而我们证明,这里提出的功能是可以通过该协议安全地 UC 实现的,前提是访问一个全局时钟(用于模拟基于时间的执行)、一个随机甲骨文(用于模拟哈希函数)和一个理想化网络(用于模拟消息传播)。我们进一步展示了如何将已知的基于属性的方法作为我们处理方法的特殊实例,以及如何将它们的基本假设作为设置功能的一部分并在不限制环境或对手的情况下在统一通信中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bitcoin as a Transaction Ledger: A Composable Treatment

Bitcoin is one of the most prominent examples of a distributed cryptographic protocol that is extensively used in reality. Nonetheless, existing security proofs are property-based, and as such they do not support composition. In this work, we put forth a universally composable treatment of the Bitcoin protocol. We specify the goal that Bitcoin aims to achieve as an instance of a parameterizable ledger functionality and present a UC abstraction of the Bitcoin blockchain protocol. Our ideal functionality is weaker than the first proposed candidate by Kiayias, Zhou, and Zikas [EUROCRYPT’16], but unlike the latter suggestion, which is arguably not implementable by the UC Bitcoin protocol, we prove that the one proposed here is securely UC-realized by the protocol assuming access to a global clock, to model time-based executions, a random oracle, to model hash functions, and an idealized network, to model message dissemination. We further show how known property-based approaches can be cast as special instances of our treatment and how their underlying assumptions can be cast in UC as part of the setup functionalities and without restricting the environment or the adversary.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cryptology
Journal of Cryptology 工程技术-工程:电子与电气
CiteScore
7.10
自引率
3.30%
发文量
24
审稿时长
18 months
期刊介绍: The Journal of Cryptology is a forum for original results in all areas of modern information security. Both cryptography and cryptanalysis are covered, including information theoretic and complexity theoretic perspectives as well as implementation, application, and standards issues. Coverage includes such topics as public key and conventional algorithms and their implementations, cryptanalytic attacks, pseudo-random sequences, computational number theory, cryptographic protocols, untraceability, privacy, authentication, key management and quantum cryptography. In addition to full-length technical, survey, and historical articles, the journal publishes short notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信