Claudia Francesca Vaga, Isabela Galvao de Lossio e Seiblitz, Katia Cristina Cruz Capel, Andrea M. Quattrini, Jaroslaw Stolarski, Stephen D. Cairns, Marcelo Visentini Kitahara
{"title":"解开深海珊瑚的系统学:通过基因组学方法描述一个新科--Stephanocyathidae(Anthozoa, Scleractinia)。","authors":"Claudia Francesca Vaga, Isabela Galvao de Lossio e Seiblitz, Katia Cristina Cruz Capel, Andrea M. Quattrini, Jaroslaw Stolarski, Stephen D. Cairns, Marcelo Visentini Kitahara","doi":"10.1111/zsc.12657","DOIUrl":null,"url":null,"abstract":"Once considered the most speciose mostly azooxanthellate scleractinian group, the family Caryophylliidae is found to be highly polyphyletic based on molecular data and is undergoing a process of systematic revision. High‐throughput sequencing methods coupled with morphological analyses have facilitated revision of several scleractinian lineages, including the aforementioned family. In previous studies that relied on few mitochondrial and nuclear markers, the caryophylliid genera <jats:italic>Stephanocyathus</jats:italic> and <jats:italic>Vaughanella</jats:italic> were phylogenetically recovered in separate clades from the lineage that includes the type genus of the family, <jats:italic>Caryophyllia</jats:italic>, which is considered the ‘true’ Caryophylliidae. To help untangle the relationship among taxa of this family, here a new deep‐sea scleractinian family (Stephanocyathidae Vaga, Cairns & Kitahara fam. nov.) is proposed based on phylogenomic reconstructions coupled with molecular features, specifically gene order, of the complete mitochondrial genome. Evolutionary reconstructions were based on both mitochondrial and nuclear ultraconserved elements (UCEs) and exon loci data sets and confirmed the divergent position of the genera <jats:italic>Stephanocyathus</jats:italic> and <jats:italic>Vaughanella</jats:italic>. The new family shows a specific gene transposition in the mitochondrial genome, not present in the ‘true’ caryophylliid lineage, but instead already observed for the species <jats:italic>Paraconotrochus antarcticus</jats:italic>, recovered as sister taxon of the here proposed new family. Although its phylogenetic position is unknown, the genus <jats:italic>Ericiocyathus</jats:italic> is also added to the new family, based on macromorphological similarities. This study represents a step forward in our understanding of deep‐sea corals relationships and provide further information (e.g., mitochondrial gene order) that will aid in future efforts of assessing the systematic of caryophylliid lineages.","PeriodicalId":49334,"journal":{"name":"Zoologica Scripta","volume":"29 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Untangling deep‐sea corals systematics: Description of a new family, Stephanocyathidae (Anthozoa, Scleractinia), through a genomic approach\",\"authors\":\"Claudia Francesca Vaga, Isabela Galvao de Lossio e Seiblitz, Katia Cristina Cruz Capel, Andrea M. Quattrini, Jaroslaw Stolarski, Stephen D. Cairns, Marcelo Visentini Kitahara\",\"doi\":\"10.1111/zsc.12657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Once considered the most speciose mostly azooxanthellate scleractinian group, the family Caryophylliidae is found to be highly polyphyletic based on molecular data and is undergoing a process of systematic revision. High‐throughput sequencing methods coupled with morphological analyses have facilitated revision of several scleractinian lineages, including the aforementioned family. In previous studies that relied on few mitochondrial and nuclear markers, the caryophylliid genera <jats:italic>Stephanocyathus</jats:italic> and <jats:italic>Vaughanella</jats:italic> were phylogenetically recovered in separate clades from the lineage that includes the type genus of the family, <jats:italic>Caryophyllia</jats:italic>, which is considered the ‘true’ Caryophylliidae. To help untangle the relationship among taxa of this family, here a new deep‐sea scleractinian family (Stephanocyathidae Vaga, Cairns & Kitahara fam. nov.) is proposed based on phylogenomic reconstructions coupled with molecular features, specifically gene order, of the complete mitochondrial genome. Evolutionary reconstructions were based on both mitochondrial and nuclear ultraconserved elements (UCEs) and exon loci data sets and confirmed the divergent position of the genera <jats:italic>Stephanocyathus</jats:italic> and <jats:italic>Vaughanella</jats:italic>. The new family shows a specific gene transposition in the mitochondrial genome, not present in the ‘true’ caryophylliid lineage, but instead already observed for the species <jats:italic>Paraconotrochus antarcticus</jats:italic>, recovered as sister taxon of the here proposed new family. Although its phylogenetic position is unknown, the genus <jats:italic>Ericiocyathus</jats:italic> is also added to the new family, based on macromorphological similarities. This study represents a step forward in our understanding of deep‐sea corals relationships and provide further information (e.g., mitochondrial gene order) that will aid in future efforts of assessing the systematic of caryophylliid lineages.\",\"PeriodicalId\":49334,\"journal\":{\"name\":\"Zoologica Scripta\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zoologica Scripta\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/zsc.12657\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoologica Scripta","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/zsc.12657","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
Untangling deep‐sea corals systematics: Description of a new family, Stephanocyathidae (Anthozoa, Scleractinia), through a genomic approach
Once considered the most speciose mostly azooxanthellate scleractinian group, the family Caryophylliidae is found to be highly polyphyletic based on molecular data and is undergoing a process of systematic revision. High‐throughput sequencing methods coupled with morphological analyses have facilitated revision of several scleractinian lineages, including the aforementioned family. In previous studies that relied on few mitochondrial and nuclear markers, the caryophylliid genera Stephanocyathus and Vaughanella were phylogenetically recovered in separate clades from the lineage that includes the type genus of the family, Caryophyllia, which is considered the ‘true’ Caryophylliidae. To help untangle the relationship among taxa of this family, here a new deep‐sea scleractinian family (Stephanocyathidae Vaga, Cairns & Kitahara fam. nov.) is proposed based on phylogenomic reconstructions coupled with molecular features, specifically gene order, of the complete mitochondrial genome. Evolutionary reconstructions were based on both mitochondrial and nuclear ultraconserved elements (UCEs) and exon loci data sets and confirmed the divergent position of the genera Stephanocyathus and Vaughanella. The new family shows a specific gene transposition in the mitochondrial genome, not present in the ‘true’ caryophylliid lineage, but instead already observed for the species Paraconotrochus antarcticus, recovered as sister taxon of the here proposed new family. Although its phylogenetic position is unknown, the genus Ericiocyathus is also added to the new family, based on macromorphological similarities. This study represents a step forward in our understanding of deep‐sea corals relationships and provide further information (e.g., mitochondrial gene order) that will aid in future efforts of assessing the systematic of caryophylliid lineages.
期刊介绍:
Zoologica Scripta publishes papers in animal systematics and phylogeny, i.e. studies of evolutionary relationships among taxa, and the origin and evolution of biological diversity. Papers can also deal with ecological interactions and geographic distributions (phylogeography) if the results are placed in a wider phylogenetic/systematic/evolutionary context. Zoologica Scripta encourages papers on the development of methods for all aspects of phylogenetic inference and biological nomenclature/classification.
Articles published in Zoologica Scripta must be original and present either theoretical or empirical studies of interest to a broad audience in systematics and phylogeny. Purely taxonomic papers, like species descriptions without being placed in a wider systematic/phylogenetic context, will not be considered.