Lawrence Labrecque, Marc-Antoine Roy, Shahrzad Soleimani Dehnavi, Mahmoudreza Taghizadeh, Jonathan D Smirl, Patrice Brassard
{"title":"下半身负压振荡诱发强迫振荡时脑压-血流关系的方向敏感性","authors":"Lawrence Labrecque, Marc-Antoine Roy, Shahrzad Soleimani Dehnavi, Mahmoudreza Taghizadeh, Jonathan D Smirl, Patrice Brassard","doi":"10.1177/0271678x241247633","DOIUrl":null,"url":null,"abstract":"A directional sensitivity of the cerebral pressure-flow relationship has been described using repeated squat-stands. Oscillatory lower body negative pressure (OLBNP) is a reproducible method to characterize dynamic cerebral autoregulation (dCA). It could represent a safer method to examine the directional sensitivity of the cerebral pressure-flow relationship within clinical populations and/or during pharmaceutical administration. Therefore, examining the cerebral pressure-flow directional sensitivity during an OLBNP-induced cyclic physiological stress is crucial. We calculated changes in middle cerebral artery mean blood velocity (MCAv) per alterations to mean arterial pressure (MAP) to compute ratios adjusted for time intervals (ΔMCAv<jats:sub>T</jats:sub>/ΔMAP<jats:sub>T</jats:sub>) with respect to the minimum-to-maximum MCAv and MAP, for each OLBNP transition (0 to −90 Torr), during 0.05 Hz and 0.10 Hz OLBNP. We then compared averaged ΔMCAv<jats:sub>T</jats:sub>/ΔMAP<jats:sub>T</jats:sub> during OLBNP-induced MAP increases (INC) (ΔMCAv<jats:sub>T</jats:sub>/[Formula: see text]) and decreases (DEC) (ΔMCAv<jats:sub>T</jats:sub>/[Formula: see text]). Nineteen healthy participants [9 females; 30 ± 6 years] were included. There were no differences in ΔMCAv<jats:sub>T</jats:sub>/ΔMAP<jats:sub>T</jats:sub> between INC and DEC at 0.05 Hz. ΔMCAv<jats:sub>T</jats:sub>/[Formula: see text] (1.06 ± 0.35 vs. 1.33 ± 0.60 cm⋅s<jats:sup>−1</jats:sup>/mmHg; p = 0.0076) was lower than ΔMCAv<jats:sub>T</jats:sub>/[Formula: see text] at 0.10 Hz. These results support OLBNP as a model to evaluate the directional sensitivity of the cerebral pressure-flow relationship.","PeriodicalId":15356,"journal":{"name":"Journal of Cerebral Blood Flow & Metabolism","volume":"120 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Directional sensitivity of the cerebral pressure-flow relationship during forced oscillations induced by oscillatory lower body negative pressure\",\"authors\":\"Lawrence Labrecque, Marc-Antoine Roy, Shahrzad Soleimani Dehnavi, Mahmoudreza Taghizadeh, Jonathan D Smirl, Patrice Brassard\",\"doi\":\"10.1177/0271678x241247633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A directional sensitivity of the cerebral pressure-flow relationship has been described using repeated squat-stands. Oscillatory lower body negative pressure (OLBNP) is a reproducible method to characterize dynamic cerebral autoregulation (dCA). It could represent a safer method to examine the directional sensitivity of the cerebral pressure-flow relationship within clinical populations and/or during pharmaceutical administration. Therefore, examining the cerebral pressure-flow directional sensitivity during an OLBNP-induced cyclic physiological stress is crucial. We calculated changes in middle cerebral artery mean blood velocity (MCAv) per alterations to mean arterial pressure (MAP) to compute ratios adjusted for time intervals (ΔMCAv<jats:sub>T</jats:sub>/ΔMAP<jats:sub>T</jats:sub>) with respect to the minimum-to-maximum MCAv and MAP, for each OLBNP transition (0 to −90 Torr), during 0.05 Hz and 0.10 Hz OLBNP. We then compared averaged ΔMCAv<jats:sub>T</jats:sub>/ΔMAP<jats:sub>T</jats:sub> during OLBNP-induced MAP increases (INC) (ΔMCAv<jats:sub>T</jats:sub>/[Formula: see text]) and decreases (DEC) (ΔMCAv<jats:sub>T</jats:sub>/[Formula: see text]). Nineteen healthy participants [9 females; 30 ± 6 years] were included. There were no differences in ΔMCAv<jats:sub>T</jats:sub>/ΔMAP<jats:sub>T</jats:sub> between INC and DEC at 0.05 Hz. ΔMCAv<jats:sub>T</jats:sub>/[Formula: see text] (1.06 ± 0.35 vs. 1.33 ± 0.60 cm⋅s<jats:sup>−1</jats:sup>/mmHg; p = 0.0076) was lower than ΔMCAv<jats:sub>T</jats:sub>/[Formula: see text] at 0.10 Hz. These results support OLBNP as a model to evaluate the directional sensitivity of the cerebral pressure-flow relationship.\",\"PeriodicalId\":15356,\"journal\":{\"name\":\"Journal of Cerebral Blood Flow & Metabolism\",\"volume\":\"120 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cerebral Blood Flow & Metabolism\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/0271678x241247633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cerebral Blood Flow & Metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0271678x241247633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Directional sensitivity of the cerebral pressure-flow relationship during forced oscillations induced by oscillatory lower body negative pressure
A directional sensitivity of the cerebral pressure-flow relationship has been described using repeated squat-stands. Oscillatory lower body negative pressure (OLBNP) is a reproducible method to characterize dynamic cerebral autoregulation (dCA). It could represent a safer method to examine the directional sensitivity of the cerebral pressure-flow relationship within clinical populations and/or during pharmaceutical administration. Therefore, examining the cerebral pressure-flow directional sensitivity during an OLBNP-induced cyclic physiological stress is crucial. We calculated changes in middle cerebral artery mean blood velocity (MCAv) per alterations to mean arterial pressure (MAP) to compute ratios adjusted for time intervals (ΔMCAvT/ΔMAPT) with respect to the minimum-to-maximum MCAv and MAP, for each OLBNP transition (0 to −90 Torr), during 0.05 Hz and 0.10 Hz OLBNP. We then compared averaged ΔMCAvT/ΔMAPT during OLBNP-induced MAP increases (INC) (ΔMCAvT/[Formula: see text]) and decreases (DEC) (ΔMCAvT/[Formula: see text]). Nineteen healthy participants [9 females; 30 ± 6 years] were included. There were no differences in ΔMCAvT/ΔMAPT between INC and DEC at 0.05 Hz. ΔMCAvT/[Formula: see text] (1.06 ± 0.35 vs. 1.33 ± 0.60 cm⋅s−1/mmHg; p = 0.0076) was lower than ΔMCAvT/[Formula: see text] at 0.10 Hz. These results support OLBNP as a model to evaluate the directional sensitivity of the cerebral pressure-flow relationship.