{"title":"(带操纵检测和光更新的部分函数的(连续)不可并行代码","authors":"Aggelos Kiayias, Feng-Hao Liu, Yiannis Tselekounis","doi":"10.1007/s00145-024-09498-2","DOIUrl":null,"url":null,"abstract":"<p>Non-malleable codes were introduced by Dziembowski et al. (in: Yao (ed) ICS2010, Tsinghua University Press, 2010), and its main application is the protection of cryptographic devices against tampering attacks on memory. In this work, we initiate a comprehensive study on non-malleable codes for the class of partial functions, that read/write on an arbitrary subset of codeword bits with specific cardinality. We present two constructions: the first one is in the CRS model and allows the adversary to selectively choose the subset of codeword bits, while the latter is in the standard model and adaptively secure. Our constructions are efficient in terms of information rate, while allowing the attacker to access asymptotically almost the entire codeword. In addition, they satisfy a notion which is stronger than non-malleability, that we call non-malleability with manipulation detection, guaranteeing that any modified codeword decodes to either the original message or to <span>\\(\\bot \\)</span>. We show that our primitive implies All-Or-Nothing Transforms (AONTs), and as a result our constructions yield efficient AONTs under standard assumptions (only one-way functions), which, to the best of our knowledge, was an open question until now. Furthermore, we construct a notion of continuous non-malleable codes (CNMC), namely CNMC with light updates, that avoids the full re-encoding process and only uses shuffling and refreshing operations. Finally, we present a number of additional applications of our primitive in tamper resilience.</p>","PeriodicalId":54849,"journal":{"name":"Journal of Cryptology","volume":"40 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(Continuous) Non-malleable Codes for Partial Functions with Manipulation Detection and Light Updates\",\"authors\":\"Aggelos Kiayias, Feng-Hao Liu, Yiannis Tselekounis\",\"doi\":\"10.1007/s00145-024-09498-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Non-malleable codes were introduced by Dziembowski et al. (in: Yao (ed) ICS2010, Tsinghua University Press, 2010), and its main application is the protection of cryptographic devices against tampering attacks on memory. In this work, we initiate a comprehensive study on non-malleable codes for the class of partial functions, that read/write on an arbitrary subset of codeword bits with specific cardinality. We present two constructions: the first one is in the CRS model and allows the adversary to selectively choose the subset of codeword bits, while the latter is in the standard model and adaptively secure. Our constructions are efficient in terms of information rate, while allowing the attacker to access asymptotically almost the entire codeword. In addition, they satisfy a notion which is stronger than non-malleability, that we call non-malleability with manipulation detection, guaranteeing that any modified codeword decodes to either the original message or to <span>\\\\(\\\\bot \\\\)</span>. We show that our primitive implies All-Or-Nothing Transforms (AONTs), and as a result our constructions yield efficient AONTs under standard assumptions (only one-way functions), which, to the best of our knowledge, was an open question until now. Furthermore, we construct a notion of continuous non-malleable codes (CNMC), namely CNMC with light updates, that avoids the full re-encoding process and only uses shuffling and refreshing operations. Finally, we present a number of additional applications of our primitive in tamper resilience.</p>\",\"PeriodicalId\":54849,\"journal\":{\"name\":\"Journal of Cryptology\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cryptology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00145-024-09498-2\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cryptology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00145-024-09498-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
(Continuous) Non-malleable Codes for Partial Functions with Manipulation Detection and Light Updates
Non-malleable codes were introduced by Dziembowski et al. (in: Yao (ed) ICS2010, Tsinghua University Press, 2010), and its main application is the protection of cryptographic devices against tampering attacks on memory. In this work, we initiate a comprehensive study on non-malleable codes for the class of partial functions, that read/write on an arbitrary subset of codeword bits with specific cardinality. We present two constructions: the first one is in the CRS model and allows the adversary to selectively choose the subset of codeword bits, while the latter is in the standard model and adaptively secure. Our constructions are efficient in terms of information rate, while allowing the attacker to access asymptotically almost the entire codeword. In addition, they satisfy a notion which is stronger than non-malleability, that we call non-malleability with manipulation detection, guaranteeing that any modified codeword decodes to either the original message or to \(\bot \). We show that our primitive implies All-Or-Nothing Transforms (AONTs), and as a result our constructions yield efficient AONTs under standard assumptions (only one-way functions), which, to the best of our knowledge, was an open question until now. Furthermore, we construct a notion of continuous non-malleable codes (CNMC), namely CNMC with light updates, that avoids the full re-encoding process and only uses shuffling and refreshing operations. Finally, we present a number of additional applications of our primitive in tamper resilience.
期刊介绍:
The Journal of Cryptology is a forum for original results in all areas of modern information security. Both cryptography and cryptanalysis are covered, including information theoretic and complexity theoretic perspectives as well as implementation, application, and standards issues. Coverage includes such topics as public key and conventional algorithms and their implementations, cryptanalytic attacks, pseudo-random sequences, computational number theory, cryptographic protocols, untraceability, privacy, authentication, key management and quantum cryptography. In addition to full-length technical, survey, and historical articles, the journal publishes short notes.