急性等长和动态运动不会改变健康人的大脑交感神经活动

Michael M Tymko, Audrey Drapeau, Maria Augusta Vieira-Coelho, Lawrence Labrecque, Sarah Imhoff, Geoff B Coombs, Stephan Langevin, Marc Fortin, Nathalie Châteauvert, Philip N Ainslie, Patrice Brassard
{"title":"急性等长和动态运动不会改变健康人的大脑交感神经活动","authors":"Michael M Tymko, Audrey Drapeau, Maria Augusta Vieira-Coelho, Lawrence Labrecque, Sarah Imhoff, Geoff B Coombs, Stephan Langevin, Marc Fortin, Nathalie Châteauvert, Philip N Ainslie, Patrice Brassard","doi":"10.1177/0271678x241248228","DOIUrl":null,"url":null,"abstract":"The impact of physiological stressors on cerebral sympathetic nervous activity (SNA) remains controversial. We hypothesized that cerebral noradrenaline (NA) spillover, an index of cerebral SNA, would not change during both submaximal isometric handgrip (HG) exercise followed by a post-exercise circulatory occlusion (PECO), and supine dynamic cycling exercise. Twelve healthy participants (5 females) underwent simultaneous blood sampling from the right radial artery and right internal jugular vein. Right internal jugular vein blood flow was measured using Duplex ultrasound, and tritiated NA was infused through the participants' right superficial forearm vein. Heart rate was recorded via electrocardiogram and blood pressure was monitored using the right radial artery. Total NA spillover increased during HG (P = 0.049), PECO (P = 0.006), and moderate cycling exercise (P = 0.03) compared to rest. Cerebral NA spillover remained unchanged during isometric HG exercise (P = 0.36), PECO after the isometric HG exercise (P = 0.45), and during moderate cycling exercise (P = 0.94) compared to rest. These results indicate that transient increases in blood pressure during acute exercise involving both small and large muscle mass do not engage cerebral SNA in healthy humans. Our findings suggest that cerebral SNA may be non-obligatory for exercise-related cerebrovascular adjustments.","PeriodicalId":15356,"journal":{"name":"Journal of Cerebral Blood Flow & Metabolism","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acute isometric and dynamic exercise do not alter cerebral sympathetic nerve activity in healthy humans\",\"authors\":\"Michael M Tymko, Audrey Drapeau, Maria Augusta Vieira-Coelho, Lawrence Labrecque, Sarah Imhoff, Geoff B Coombs, Stephan Langevin, Marc Fortin, Nathalie Châteauvert, Philip N Ainslie, Patrice Brassard\",\"doi\":\"10.1177/0271678x241248228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The impact of physiological stressors on cerebral sympathetic nervous activity (SNA) remains controversial. We hypothesized that cerebral noradrenaline (NA) spillover, an index of cerebral SNA, would not change during both submaximal isometric handgrip (HG) exercise followed by a post-exercise circulatory occlusion (PECO), and supine dynamic cycling exercise. Twelve healthy participants (5 females) underwent simultaneous blood sampling from the right radial artery and right internal jugular vein. Right internal jugular vein blood flow was measured using Duplex ultrasound, and tritiated NA was infused through the participants' right superficial forearm vein. Heart rate was recorded via electrocardiogram and blood pressure was monitored using the right radial artery. Total NA spillover increased during HG (P = 0.049), PECO (P = 0.006), and moderate cycling exercise (P = 0.03) compared to rest. Cerebral NA spillover remained unchanged during isometric HG exercise (P = 0.36), PECO after the isometric HG exercise (P = 0.45), and during moderate cycling exercise (P = 0.94) compared to rest. These results indicate that transient increases in blood pressure during acute exercise involving both small and large muscle mass do not engage cerebral SNA in healthy humans. Our findings suggest that cerebral SNA may be non-obligatory for exercise-related cerebrovascular adjustments.\",\"PeriodicalId\":15356,\"journal\":{\"name\":\"Journal of Cerebral Blood Flow & Metabolism\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cerebral Blood Flow & Metabolism\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/0271678x241248228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cerebral Blood Flow & Metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0271678x241248228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生理应激因素对大脑交感神经活动(SNA)的影响仍存在争议。我们假设,作为大脑交感神经活动指数的大脑去甲肾上腺素(NA)溢出量在进行亚极限等长手握(HG)运动后再进行运动后循环闭塞(PECO)和仰卧动态骑自行车运动时不会发生变化。12 名健康参与者(5 名女性)同时接受了右桡动脉和右颈内静脉采血。使用双工超声波测量右颈内静脉血流量,并通过参与者的右前臂浅静脉注入三价 NA。心电图记录心率,右桡动脉监测血压。与休息时相比,HG(P = 0.049)、PECO(P = 0.006)和中度骑车运动(P = 0.03)时的NA总溢出量均有所增加。与休息相比,大脑 NA 溢出在等长 HG 运动期间(P = 0.36)、等长 HG 运动后 PECO 期间(P = 0.45)和中度骑车运动期间(P = 0.94)保持不变。这些结果表明,在涉及小肌肉和大肌肉的急性运动中,血压的短暂升高并不会影响健康人的大脑 SNA。我们的研究结果表明,脑SNA可能不是运动相关脑血管调节的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acute isometric and dynamic exercise do not alter cerebral sympathetic nerve activity in healthy humans
The impact of physiological stressors on cerebral sympathetic nervous activity (SNA) remains controversial. We hypothesized that cerebral noradrenaline (NA) spillover, an index of cerebral SNA, would not change during both submaximal isometric handgrip (HG) exercise followed by a post-exercise circulatory occlusion (PECO), and supine dynamic cycling exercise. Twelve healthy participants (5 females) underwent simultaneous blood sampling from the right radial artery and right internal jugular vein. Right internal jugular vein blood flow was measured using Duplex ultrasound, and tritiated NA was infused through the participants' right superficial forearm vein. Heart rate was recorded via electrocardiogram and blood pressure was monitored using the right radial artery. Total NA spillover increased during HG (P = 0.049), PECO (P = 0.006), and moderate cycling exercise (P = 0.03) compared to rest. Cerebral NA spillover remained unchanged during isometric HG exercise (P = 0.36), PECO after the isometric HG exercise (P = 0.45), and during moderate cycling exercise (P = 0.94) compared to rest. These results indicate that transient increases in blood pressure during acute exercise involving both small and large muscle mass do not engage cerebral SNA in healthy humans. Our findings suggest that cerebral SNA may be non-obligatory for exercise-related cerebrovascular adjustments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信