{"title":"管道几何形状对轮缘驱动推进器流体力学性能影响的数值分析","authors":"Wen Jiang, jin Zhao, Tao Bian, Wuxin Yu","doi":"10.1177/14750902241242248","DOIUrl":null,"url":null,"abstract":"This paper studies the effect of the duct geometry on the hydrodynamic performance of rim-driven thruster (RDT) based on Computational Fluid Dynamics (CFD) method. The effect of the thickness of the duct, the radius of the leading edge of the duct and the geometry of the trailing edge of the duct on the thrust coefficient, torque coefficient and efficiency are investigated and analyzed. The conclusion shows the thrust coefficient increases with the thickness of the duct decreasing, however the torque coefficient increases with the increase of the thickness of the duct, so the efficiency increasing with the decrease of the thickness of the duct. On the other hand, the radius of the leading edge of the duct has no significant effect on the thrust coefficient of the RDT. However, the torque coefficient of RDT decreases with the increase of the radius of the leading edge of the duct, so the efficiency of RDT increases with the increase of the radius of the leading edge of the duct. A comprehensive comparison shows that the RDT 15-0.5 (the duct thickness is 15 mm, the ratio of the radius of the leading edge of the duct and the duct thickness is 0.5) has the best hydrodynamic performance among the investigated RDT models in this work.","PeriodicalId":20667,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","volume":"2 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical analysis of the effect of the duct geometry on the hydrodynamic performance of rim-driven thruster\",\"authors\":\"Wen Jiang, jin Zhao, Tao Bian, Wuxin Yu\",\"doi\":\"10.1177/14750902241242248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the effect of the duct geometry on the hydrodynamic performance of rim-driven thruster (RDT) based on Computational Fluid Dynamics (CFD) method. The effect of the thickness of the duct, the radius of the leading edge of the duct and the geometry of the trailing edge of the duct on the thrust coefficient, torque coefficient and efficiency are investigated and analyzed. The conclusion shows the thrust coefficient increases with the thickness of the duct decreasing, however the torque coefficient increases with the increase of the thickness of the duct, so the efficiency increasing with the decrease of the thickness of the duct. On the other hand, the radius of the leading edge of the duct has no significant effect on the thrust coefficient of the RDT. However, the torque coefficient of RDT decreases with the increase of the radius of the leading edge of the duct, so the efficiency of RDT increases with the increase of the radius of the leading edge of the duct. A comprehensive comparison shows that the RDT 15-0.5 (the duct thickness is 15 mm, the ratio of the radius of the leading edge of the duct and the duct thickness is 0.5) has the best hydrodynamic performance among the investigated RDT models in this work.\",\"PeriodicalId\":20667,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14750902241242248\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14750902241242248","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Numerical analysis of the effect of the duct geometry on the hydrodynamic performance of rim-driven thruster
This paper studies the effect of the duct geometry on the hydrodynamic performance of rim-driven thruster (RDT) based on Computational Fluid Dynamics (CFD) method. The effect of the thickness of the duct, the radius of the leading edge of the duct and the geometry of the trailing edge of the duct on the thrust coefficient, torque coefficient and efficiency are investigated and analyzed. The conclusion shows the thrust coefficient increases with the thickness of the duct decreasing, however the torque coefficient increases with the increase of the thickness of the duct, so the efficiency increasing with the decrease of the thickness of the duct. On the other hand, the radius of the leading edge of the duct has no significant effect on the thrust coefficient of the RDT. However, the torque coefficient of RDT decreases with the increase of the radius of the leading edge of the duct, so the efficiency of RDT increases with the increase of the radius of the leading edge of the duct. A comprehensive comparison shows that the RDT 15-0.5 (the duct thickness is 15 mm, the ratio of the radius of the leading edge of the duct and the duct thickness is 0.5) has the best hydrodynamic performance among the investigated RDT models in this work.
期刊介绍:
The Journal of Engineering for the Maritime Environment is concerned with the design, production and operation of engineering artefacts for the maritime environment. The journal straddles the traditional boundaries of naval architecture, marine engineering, offshore/ocean engineering, coastal engineering and port engineering.