伪代数的编码和双极限

IF 0.6 4区 数学 Q3 MATHEMATICS
Axel Osmond
{"title":"伪代数的编码和双极限","authors":"Axel Osmond","doi":"10.1007/s10485-024-09765-0","DOIUrl":null,"url":null,"abstract":"<div><p>We categorify cocompleteness results of monad theory, in the context of pseudomonads. We first prove a general result establishing that, in any 2-category, weighted bicolimits can be constructed from oplax bicolimits and bicoequalizers of codescent objects. After prerequisites on pseudomonads and their pseudo-algebras, we give a 2-dimensional Linton theorem reducing bicocompleteness of 2-categories of pseudo-algebras to existence of bicoequalizers of codescent objects. Finally we prove this condition to be fulfilled in the case of a bifinitary pseudomonad, ensuring bicocompleteness.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Codescent and Bicolimits of Pseudo-Algebras\",\"authors\":\"Axel Osmond\",\"doi\":\"10.1007/s10485-024-09765-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We categorify cocompleteness results of monad theory, in the context of pseudomonads. We first prove a general result establishing that, in any 2-category, weighted bicolimits can be constructed from oplax bicolimits and bicoequalizers of codescent objects. After prerequisites on pseudomonads and their pseudo-algebras, we give a 2-dimensional Linton theorem reducing bicocompleteness of 2-categories of pseudo-algebras to existence of bicoequalizers of codescent objects. Finally we prove this condition to be fulfilled in the case of a bifinitary pseudomonad, ensuring bicocompleteness.</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-024-09765-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-024-09765-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们以假单子为背景,对单子理论的共完备性结果进行分类。我们首先证明了一个一般性结果,即在任何二元范畴中,加权二元极限都可以从oplax二元极限和编码对象的二元均衡器构造出来。在假单胞及其伪代数的先决条件之后,我们给出了一个二维林顿定理,将伪代数的 2 维类的二重完备性简化为编码对象的二重均衡器的存在性。最后,我们证明这一条件在二元假单子的情况下得到满足,从而确保了二元完备性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Codescent and Bicolimits of Pseudo-Algebras

We categorify cocompleteness results of monad theory, in the context of pseudomonads. We first prove a general result establishing that, in any 2-category, weighted bicolimits can be constructed from oplax bicolimits and bicoequalizers of codescent objects. After prerequisites on pseudomonads and their pseudo-algebras, we give a 2-dimensional Linton theorem reducing bicocompleteness of 2-categories of pseudo-algebras to existence of bicoequalizers of codescent objects. Finally we prove this condition to be fulfilled in the case of a bifinitary pseudomonad, ensuring bicocompleteness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信