Chen Huang, Jijun Gu, Jichuan Jia, Leilei Chen, Shujiang Wang
{"title":"基于同向旋转坐标法的深层陡立管可行性分析","authors":"Chen Huang, Jijun Gu, Jichuan Jia, Leilei Chen, Shujiang Wang","doi":"10.1177/14750902241240210","DOIUrl":null,"url":null,"abstract":"DSR (Deep steep riser) is a new riser structure that reduces the ultra-high-tension load caused by the riser self-weight. In this paper, the mechanical behavior of DSR under different buoyancy module configurations and different ocean currents is studied. The finite element model of DSR is established based on co-rotational coordinate method. The model is solved by arc length method. The accuracy of the numerical method is verified by Abaqus software. Then, the effects of buoyancy module length and buoyancy factor on DSR are analyzed. Finally, the influence of different current incidence angles and velocities on DSR is evaluated. The results show that the DSR model based on the co-rotational coordinate method can effectively simulate the nonlinear behavior of large deformation of DSR. The method is simple, flexible and computationally efficient. This method can quickly improve the efficiency of numerical calculation in static analysis of deepwater riser. And DSR is feasible under certain conditions.","PeriodicalId":20667,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","volume":"92 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility analysis of deep steep riser based on co-rotational coordinate method\",\"authors\":\"Chen Huang, Jijun Gu, Jichuan Jia, Leilei Chen, Shujiang Wang\",\"doi\":\"10.1177/14750902241240210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DSR (Deep steep riser) is a new riser structure that reduces the ultra-high-tension load caused by the riser self-weight. In this paper, the mechanical behavior of DSR under different buoyancy module configurations and different ocean currents is studied. The finite element model of DSR is established based on co-rotational coordinate method. The model is solved by arc length method. The accuracy of the numerical method is verified by Abaqus software. Then, the effects of buoyancy module length and buoyancy factor on DSR are analyzed. Finally, the influence of different current incidence angles and velocities on DSR is evaluated. The results show that the DSR model based on the co-rotational coordinate method can effectively simulate the nonlinear behavior of large deformation of DSR. The method is simple, flexible and computationally efficient. This method can quickly improve the efficiency of numerical calculation in static analysis of deepwater riser. And DSR is feasible under certain conditions.\",\"PeriodicalId\":20667,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14750902241240210\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14750902241240210","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Feasibility analysis of deep steep riser based on co-rotational coordinate method
DSR (Deep steep riser) is a new riser structure that reduces the ultra-high-tension load caused by the riser self-weight. In this paper, the mechanical behavior of DSR under different buoyancy module configurations and different ocean currents is studied. The finite element model of DSR is established based on co-rotational coordinate method. The model is solved by arc length method. The accuracy of the numerical method is verified by Abaqus software. Then, the effects of buoyancy module length and buoyancy factor on DSR are analyzed. Finally, the influence of different current incidence angles and velocities on DSR is evaluated. The results show that the DSR model based on the co-rotational coordinate method can effectively simulate the nonlinear behavior of large deformation of DSR. The method is simple, flexible and computationally efficient. This method can quickly improve the efficiency of numerical calculation in static analysis of deepwater riser. And DSR is feasible under certain conditions.
期刊介绍:
The Journal of Engineering for the Maritime Environment is concerned with the design, production and operation of engineering artefacts for the maritime environment. The journal straddles the traditional boundaries of naval architecture, marine engineering, offshore/ocean engineering, coastal engineering and port engineering.