{"title":"非局部非线性薛定谔方程的准周期解","authors":"Liang Guan, Xianguo Geng, Xue Geng","doi":"10.1007/s12346-024-01028-6","DOIUrl":null,"url":null,"abstract":"<p>A hierarchy of nonlocal nonlinear Schrödinger equations is derived by using the Lenard gradients and the zero-curvature equation. According to the Lax matrix of the nonlocal nonlinear Schrödinger equations, we introduce a hyperelliptic Riemann surface <span>\\({\\mathcal {K}}_{n}\\)</span> of genus <i>n</i>, from which Dubrovin-type equations, meromorphic function, and Baker–Akhiezer function are established. By the theory of algebraic curves, the corresponding flows are straightened by resorting to the Abel–Jacobi coordinates. Finally, we obtain the explicit Riemann theta function representations of the Baker–Akhiezer function, specifically, that of solutions for the hierarchy of nonlocal nonlinear Schrödinger equations in regard to the asymptotic properties of the Baker–Akhiezer function.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"49 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-Periodic Solutions to the Nonlocal Nonlinear Schrödinger Equations\",\"authors\":\"Liang Guan, Xianguo Geng, Xue Geng\",\"doi\":\"10.1007/s12346-024-01028-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A hierarchy of nonlocal nonlinear Schrödinger equations is derived by using the Lenard gradients and the zero-curvature equation. According to the Lax matrix of the nonlocal nonlinear Schrödinger equations, we introduce a hyperelliptic Riemann surface <span>\\\\({\\\\mathcal {K}}_{n}\\\\)</span> of genus <i>n</i>, from which Dubrovin-type equations, meromorphic function, and Baker–Akhiezer function are established. By the theory of algebraic curves, the corresponding flows are straightened by resorting to the Abel–Jacobi coordinates. Finally, we obtain the explicit Riemann theta function representations of the Baker–Akhiezer function, specifically, that of solutions for the hierarchy of nonlocal nonlinear Schrödinger equations in regard to the asymptotic properties of the Baker–Akhiezer function.</p>\",\"PeriodicalId\":48886,\"journal\":{\"name\":\"Qualitative Theory of Dynamical Systems\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Qualitative Theory of Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12346-024-01028-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01028-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Quasi-Periodic Solutions to the Nonlocal Nonlinear Schrödinger Equations
A hierarchy of nonlocal nonlinear Schrödinger equations is derived by using the Lenard gradients and the zero-curvature equation. According to the Lax matrix of the nonlocal nonlinear Schrödinger equations, we introduce a hyperelliptic Riemann surface \({\mathcal {K}}_{n}\) of genus n, from which Dubrovin-type equations, meromorphic function, and Baker–Akhiezer function are established. By the theory of algebraic curves, the corresponding flows are straightened by resorting to the Abel–Jacobi coordinates. Finally, we obtain the explicit Riemann theta function representations of the Baker–Akhiezer function, specifically, that of solutions for the hierarchy of nonlocal nonlinear Schrödinger equations in regard to the asymptotic properties of the Baker–Akhiezer function.
期刊介绍:
Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.