关于 "比较大学化学学生与 ChatGPT 在涉及酸碱的计算中的表现 "的评论

IF 2.9 3区 教育学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Joshua Schrier*, 
{"title":"关于 \"比较大学化学学生与 ChatGPT 在涉及酸碱的计算中的表现 \"的评论","authors":"Joshua Schrier*,&nbsp;","doi":"10.1021/acs.jchemed.4c00058","DOIUrl":null,"url":null,"abstract":"<p >In a recent paper in this <i>Journal</i> ( <cite><i>J. Chem. Educ.</i></cite> <span>2023</span>, <em>100</em>, 3934−3944), Clark et al. evaluated the performance of the GPT-3.5 large language model (LLM) on ten undergraduate pH calculation problems. They reported that GPT-3.5 gave especially poor results for salt and titration problems, returning the correct results only 10% and 0% of the time, respectively, and that, despite a correct application of heuristics, the LLM made mathematical errors and used flawed strategies. However, these problems are <i>partially</i> mitigated using the more advanced GPT-4 model and <i>entirely corrected</i> using simple prompting and calculator tool use patterns demonstrated herein.</p>","PeriodicalId":43,"journal":{"name":"Journal of Chemical Education","volume":"101 5","pages":"1782–1784"},"PeriodicalIF":2.9000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comment on “Comparing the Performance of College Chemistry Students with ChatGPT for Calculations Involving Acids and Bases”\",\"authors\":\"Joshua Schrier*,&nbsp;\",\"doi\":\"10.1021/acs.jchemed.4c00058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In a recent paper in this <i>Journal</i> ( <cite><i>J. Chem. Educ.</i></cite> <span>2023</span>, <em>100</em>, 3934−3944), Clark et al. evaluated the performance of the GPT-3.5 large language model (LLM) on ten undergraduate pH calculation problems. They reported that GPT-3.5 gave especially poor results for salt and titration problems, returning the correct results only 10% and 0% of the time, respectively, and that, despite a correct application of heuristics, the LLM made mathematical errors and used flawed strategies. However, these problems are <i>partially</i> mitigated using the more advanced GPT-4 model and <i>entirely corrected</i> using simple prompting and calculator tool use patterns demonstrated herein.</p>\",\"PeriodicalId\":43,\"journal\":{\"name\":\"Journal of Chemical Education\",\"volume\":\"101 5\",\"pages\":\"1782–1784\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Education\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00058\",\"RegionNum\":3,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Education","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00058","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Clark 等人最近在本期刊上发表了一篇论文(J. Chem. Educ. 2023, 100, 3934-3944),评估了 GPT-3.5 大型语言模型(LLM)在十个本科生 pH 计算问题上的表现。他们报告说,GPT-3.5 在盐和滴定问题上的结果特别差,分别只有 10% 和 0% 的时间返回正确结果,而且,尽管正确应用了启发式方法,但 LLM 仍会出现数学错误并使用有缺陷的策略。不过,使用更先进的 GPT-4 模型可以部分缓解这些问题,而使用本文展示的简单提示和计算器工具使用模式则可以完全纠正这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comment on “Comparing the Performance of College Chemistry Students with ChatGPT for Calculations Involving Acids and Bases”

Comment on “Comparing the Performance of College Chemistry Students with ChatGPT for Calculations Involving Acids and Bases”

Comment on “Comparing the Performance of College Chemistry Students with ChatGPT for Calculations Involving Acids and Bases”

In a recent paper in this Journal ( J. Chem. Educ. 2023, 100, 3934−3944), Clark et al. evaluated the performance of the GPT-3.5 large language model (LLM) on ten undergraduate pH calculation problems. They reported that GPT-3.5 gave especially poor results for salt and titration problems, returning the correct results only 10% and 0% of the time, respectively, and that, despite a correct application of heuristics, the LLM made mathematical errors and used flawed strategies. However, these problems are partially mitigated using the more advanced GPT-4 model and entirely corrected using simple prompting and calculator tool use patterns demonstrated herein.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Education
Journal of Chemical Education 化学-化学综合
CiteScore
5.60
自引率
50.00%
发文量
465
审稿时长
6.5 months
期刊介绍: The Journal of Chemical Education is the official journal of the Division of Chemical Education of the American Chemical Society, co-published with the American Chemical Society Publications Division. Launched in 1924, the Journal of Chemical Education is the world’s premier chemical education journal. The Journal publishes peer-reviewed articles and related information as a resource to those in the field of chemical education and to those institutions that serve them. JCE typically addresses chemical content, activities, laboratory experiments, instructional methods, and pedagogies. The Journal serves as a means of communication among people across the world who are interested in the teaching and learning of chemistry. This includes instructors of chemistry from middle school through graduate school, professional staff who support these teaching activities, as well as some scientists in commerce, industry, and government.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信