Hong Ye Tan, Subhadip Mukherjee, Junqi Tang, Carola-Bibiane Schönlieb
{"title":"可证明收敛的即插即用准牛顿方法","authors":"Hong Ye Tan, Subhadip Mukherjee, Junqi Tang, Carola-Bibiane Schönlieb","doi":"10.1137/23m157185x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 17, Issue 2, Page 785-819, June 2024. <br/> Abstract.Plug-and-Play (PnP) methods are a class of efficient iterative methods that aim to combine data fidelity terms and deep denoisers using classical optimization algorithms, such as ISTA or ADMM, with applications in inverse problems and imaging. Provable PnP methods are a subclass of PnP methods with convergence guarantees, such as fixed point convergence or convergence to critical points of some energy function. Many existing provable PnP methods impose heavy restrictions on the denoiser or fidelity function, such as nonexpansiveness or strict convexity, respectively. In this work, we propose a novel algorithmic approach incorporating quasi-Newton steps into a provable PnP framework based on proximal denoisers, resulting in greatly accelerated convergence while retaining light assumptions on the denoiser. By characterizing the denoiser as the proximal operator of a weakly convex function, we show that the fixed points of the proposed quasi-Newton PnP algorithm are critical points of a weakly convex function. Numerical experiments on image deblurring and super-resolution demonstrate 2–8x faster convergence as compared to other provable PnP methods with similar reconstruction quality.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Provably Convergent Plug-and-Play Quasi-Newton Methods\",\"authors\":\"Hong Ye Tan, Subhadip Mukherjee, Junqi Tang, Carola-Bibiane Schönlieb\",\"doi\":\"10.1137/23m157185x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Imaging Sciences, Volume 17, Issue 2, Page 785-819, June 2024. <br/> Abstract.Plug-and-Play (PnP) methods are a class of efficient iterative methods that aim to combine data fidelity terms and deep denoisers using classical optimization algorithms, such as ISTA or ADMM, with applications in inverse problems and imaging. Provable PnP methods are a subclass of PnP methods with convergence guarantees, such as fixed point convergence or convergence to critical points of some energy function. Many existing provable PnP methods impose heavy restrictions on the denoiser or fidelity function, such as nonexpansiveness or strict convexity, respectively. In this work, we propose a novel algorithmic approach incorporating quasi-Newton steps into a provable PnP framework based on proximal denoisers, resulting in greatly accelerated convergence while retaining light assumptions on the denoiser. By characterizing the denoiser as the proximal operator of a weakly convex function, we show that the fixed points of the proposed quasi-Newton PnP algorithm are critical points of a weakly convex function. Numerical experiments on image deblurring and super-resolution demonstrate 2–8x faster convergence as compared to other provable PnP methods with similar reconstruction quality.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m157185x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m157185x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
SIAM Journal on Imaging Sciences, Volume 17, Issue 2, Page 785-819, June 2024. Abstract.Plug-and-Play (PnP) methods are a class of efficient iterative methods that aim to combine data fidelity terms and deep denoisers using classical optimization algorithms, such as ISTA or ADMM, with applications in inverse problems and imaging. Provable PnP methods are a subclass of PnP methods with convergence guarantees, such as fixed point convergence or convergence to critical points of some energy function. Many existing provable PnP methods impose heavy restrictions on the denoiser or fidelity function, such as nonexpansiveness or strict convexity, respectively. In this work, we propose a novel algorithmic approach incorporating quasi-Newton steps into a provable PnP framework based on proximal denoisers, resulting in greatly accelerated convergence while retaining light assumptions on the denoiser. By characterizing the denoiser as the proximal operator of a weakly convex function, we show that the fixed points of the proposed quasi-Newton PnP algorithm are critical points of a weakly convex function. Numerical experiments on image deblurring and super-resolution demonstrate 2–8x faster convergence as compared to other provable PnP methods with similar reconstruction quality.