Muhammad Nasir Amin, Ahmed A. Alawi Al-Naghi, Roz-Ud-Din Nassar, Omar Algassem, Suleman Ayub Khan, Ahmed Farouk Deifalla
{"title":"利用当代人工智能方法研究碱活性混凝土的流变特性","authors":"Muhammad Nasir Amin, Ahmed A. Alawi Al-Naghi, Roz-Ud-Din Nassar, Omar Algassem, Suleman Ayub Khan, Ahmed Farouk Deifalla","doi":"10.1515/rams-2024-0006","DOIUrl":null,"url":null,"abstract":"Using artificial intelligence-based tools, this research aims to establish a direct correlation between the alkali-activated concrete (AAC) mix design factors and their performances. More specifically, the machine learning system was fed new property data obtained from AAC mixes used in laboratory experiments. The rheological parameters (yield stress [static/dynamic] and plastic viscosity) of AAC were predicted using the multilayer perceptron neural network (MLPNN) and bagging ensemble (BE) models. In addition, the <jats:italic>R</jats:italic> <jats:sup>2</jats:sup> values, k-fold analyses, statistical checks, and the dissimilarity between the experimental and predicted compressive strength were employed to assess the performance of the created models. Also, the SHapley additive exPlanation (SHAP) approach was used for examining the relevance of influencing parameters. The BE approach was found to be significantly accurate in all prediction models, with <jats:italic>R</jats:italic> <jats:sup>2</jats:sup> greater than 0.90, and MLPNN models were found to be moderately precise, with <jats:italic>R</jats:italic> <jats:sup>2</jats:sup> slightly below 0.90. However, the error assessment through statistical checks and k-fold analysis also validated the higher precision of BE models over the MLPNN models. Building models that can calculate rheological properties of AAC for different values of input parameters could save a lot of time and money compared to doing the tests in a laboratory. In order to ascertain the required amounts of raw materials of AAC, investigators, as well as businesses, may find the SHAP study helpful.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"1 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the rheological characteristics of alkali-activated concrete using contemporary artificial intelligence approaches\",\"authors\":\"Muhammad Nasir Amin, Ahmed A. Alawi Al-Naghi, Roz-Ud-Din Nassar, Omar Algassem, Suleman Ayub Khan, Ahmed Farouk Deifalla\",\"doi\":\"10.1515/rams-2024-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using artificial intelligence-based tools, this research aims to establish a direct correlation between the alkali-activated concrete (AAC) mix design factors and their performances. More specifically, the machine learning system was fed new property data obtained from AAC mixes used in laboratory experiments. The rheological parameters (yield stress [static/dynamic] and plastic viscosity) of AAC were predicted using the multilayer perceptron neural network (MLPNN) and bagging ensemble (BE) models. In addition, the <jats:italic>R</jats:italic> <jats:sup>2</jats:sup> values, k-fold analyses, statistical checks, and the dissimilarity between the experimental and predicted compressive strength were employed to assess the performance of the created models. Also, the SHapley additive exPlanation (SHAP) approach was used for examining the relevance of influencing parameters. The BE approach was found to be significantly accurate in all prediction models, with <jats:italic>R</jats:italic> <jats:sup>2</jats:sup> greater than 0.90, and MLPNN models were found to be moderately precise, with <jats:italic>R</jats:italic> <jats:sup>2</jats:sup> slightly below 0.90. However, the error assessment through statistical checks and k-fold analysis also validated the higher precision of BE models over the MLPNN models. Building models that can calculate rheological properties of AAC for different values of input parameters could save a lot of time and money compared to doing the tests in a laboratory. In order to ascertain the required amounts of raw materials of AAC, investigators, as well as businesses, may find the SHAP study helpful.\",\"PeriodicalId\":54484,\"journal\":{\"name\":\"Reviews on Advanced Materials Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews on Advanced Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/rams-2024-0006\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews on Advanced Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/rams-2024-0006","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigating the rheological characteristics of alkali-activated concrete using contemporary artificial intelligence approaches
Using artificial intelligence-based tools, this research aims to establish a direct correlation between the alkali-activated concrete (AAC) mix design factors and their performances. More specifically, the machine learning system was fed new property data obtained from AAC mixes used in laboratory experiments. The rheological parameters (yield stress [static/dynamic] and plastic viscosity) of AAC were predicted using the multilayer perceptron neural network (MLPNN) and bagging ensemble (BE) models. In addition, the R2 values, k-fold analyses, statistical checks, and the dissimilarity between the experimental and predicted compressive strength were employed to assess the performance of the created models. Also, the SHapley additive exPlanation (SHAP) approach was used for examining the relevance of influencing parameters. The BE approach was found to be significantly accurate in all prediction models, with R2 greater than 0.90, and MLPNN models were found to be moderately precise, with R2 slightly below 0.90. However, the error assessment through statistical checks and k-fold analysis also validated the higher precision of BE models over the MLPNN models. Building models that can calculate rheological properties of AAC for different values of input parameters could save a lot of time and money compared to doing the tests in a laboratory. In order to ascertain the required amounts of raw materials of AAC, investigators, as well as businesses, may find the SHAP study helpful.
期刊介绍:
Reviews on Advanced Materials Science is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in the area of theoretical and experimental studies of advanced materials. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication.
Reviews on Advanced Materials Science is listed inter alia by Clarivate Analytics (formerly Thomson Reuters) - Current Contents/Physical, Chemical, and Earth Sciences (CC/PC&ES), JCR and SCIE. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.