{"title":"公度量空间中最小梯度函数的双边界条件障碍问题","authors":"Josh Kline","doi":"10.1007/s11118-024-10135-7","DOIUrl":null,"url":null,"abstract":"<p>In the setting of a metric space equipped with a doubling measure supporting a (1, 1)-Poincaré inequality, we study the problem of minimizing the BV-energy in a bounded domain <span>\\(\\Omega \\)</span> of functions bounded between two obstacle functions inside <span>\\(\\Omega \\)</span>, and whose trace lies between two prescribed functions on the boundary. If the class of candidate functions is nonempty, we show that solutions exist for continuous obstacles and continuous boundary data when <span>\\(\\Omega \\)</span> is a uniform domain whose boundary is of positive mean curvature in the sense of Lahti, Malý, Shanmugalingam, and Speight (2019). While such solutions are not unique in general, we show the existence of unique minimal solutions. Since candidate functions need not agree outside of the domain, standard compactness arguments fail to provide existence of weak solutions as they are defined for the problem with single boundary condition. To overcome this, we introduce a class of <span>\\( \\varepsilon \\)</span>-<i>weak solutions</i> as an intermediate step. Our existence results generalize those of Ziemer and Zumbrun (1999), who studied this problem in the Euclidean setting with a single obstacle and single boundary condition.</p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"8 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Obstacle Problems with Double Boundary Condition for Least Gradient Functions in Metric Measure Spaces\",\"authors\":\"Josh Kline\",\"doi\":\"10.1007/s11118-024-10135-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the setting of a metric space equipped with a doubling measure supporting a (1, 1)-Poincaré inequality, we study the problem of minimizing the BV-energy in a bounded domain <span>\\\\(\\\\Omega \\\\)</span> of functions bounded between two obstacle functions inside <span>\\\\(\\\\Omega \\\\)</span>, and whose trace lies between two prescribed functions on the boundary. If the class of candidate functions is nonempty, we show that solutions exist for continuous obstacles and continuous boundary data when <span>\\\\(\\\\Omega \\\\)</span> is a uniform domain whose boundary is of positive mean curvature in the sense of Lahti, Malý, Shanmugalingam, and Speight (2019). While such solutions are not unique in general, we show the existence of unique minimal solutions. Since candidate functions need not agree outside of the domain, standard compactness arguments fail to provide existence of weak solutions as they are defined for the problem with single boundary condition. To overcome this, we introduce a class of <span>\\\\( \\\\varepsilon \\\\)</span>-<i>weak solutions</i> as an intermediate step. Our existence results generalize those of Ziemer and Zumbrun (1999), who studied this problem in the Euclidean setting with a single obstacle and single boundary condition.</p>\",\"PeriodicalId\":49679,\"journal\":{\"name\":\"Potential Analysis\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Potential Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11118-024-10135-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10135-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Obstacle Problems with Double Boundary Condition for Least Gradient Functions in Metric Measure Spaces
In the setting of a metric space equipped with a doubling measure supporting a (1, 1)-Poincaré inequality, we study the problem of minimizing the BV-energy in a bounded domain \(\Omega \) of functions bounded between two obstacle functions inside \(\Omega \), and whose trace lies between two prescribed functions on the boundary. If the class of candidate functions is nonempty, we show that solutions exist for continuous obstacles and continuous boundary data when \(\Omega \) is a uniform domain whose boundary is of positive mean curvature in the sense of Lahti, Malý, Shanmugalingam, and Speight (2019). While such solutions are not unique in general, we show the existence of unique minimal solutions. Since candidate functions need not agree outside of the domain, standard compactness arguments fail to provide existence of weak solutions as they are defined for the problem with single boundary condition. To overcome this, we introduce a class of \( \varepsilon \)-weak solutions as an intermediate step. Our existence results generalize those of Ziemer and Zumbrun (1999), who studied this problem in the Euclidean setting with a single obstacle and single boundary condition.
期刊介绍:
The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.