{"title":"分数奥利兹-索博廖夫空间之间的包含关系和 Littlewood-Paley 特征","authors":"Dominic Breit, Andrea Cianchi","doi":"10.1007/s11118-024-10136-6","DOIUrl":null,"url":null,"abstract":"<p>Embeddings among fractional Orlicz-Sobolev spaces with different smoothness are characterized. In particular, besides recovering standard embeddings for classical fractional Sobolev spaces, novel results are derived in borderline situations where the latter fail. For instance, limiting embeddings of Pohozhaev-Trudinger-Yudovich type into exponential spaces are offered. The equivalence of Gagliardo-Slobodeckij norms in fractional Orlicz-Sobolev spaces to norms defined via Littlewood-Paley decompositions, oscillations, or Besov type difference quotients is established as well. This equivalence, of independent interest, is a key tool in the proof of the relevant embeddings. They also rest upon a new optimal inequality for convolutions in Orlicz spaces.</p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"42 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inclusion Relations Among Fractional Orlicz-Sobolev Spaces and a Littlewood-Paley Characterization\",\"authors\":\"Dominic Breit, Andrea Cianchi\",\"doi\":\"10.1007/s11118-024-10136-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Embeddings among fractional Orlicz-Sobolev spaces with different smoothness are characterized. In particular, besides recovering standard embeddings for classical fractional Sobolev spaces, novel results are derived in borderline situations where the latter fail. For instance, limiting embeddings of Pohozhaev-Trudinger-Yudovich type into exponential spaces are offered. The equivalence of Gagliardo-Slobodeckij norms in fractional Orlicz-Sobolev spaces to norms defined via Littlewood-Paley decompositions, oscillations, or Besov type difference quotients is established as well. This equivalence, of independent interest, is a key tool in the proof of the relevant embeddings. They also rest upon a new optimal inequality for convolutions in Orlicz spaces.</p>\",\"PeriodicalId\":49679,\"journal\":{\"name\":\"Potential Analysis\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Potential Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11118-024-10136-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10136-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Inclusion Relations Among Fractional Orlicz-Sobolev Spaces and a Littlewood-Paley Characterization
Embeddings among fractional Orlicz-Sobolev spaces with different smoothness are characterized. In particular, besides recovering standard embeddings for classical fractional Sobolev spaces, novel results are derived in borderline situations where the latter fail. For instance, limiting embeddings of Pohozhaev-Trudinger-Yudovich type into exponential spaces are offered. The equivalence of Gagliardo-Slobodeckij norms in fractional Orlicz-Sobolev spaces to norms defined via Littlewood-Paley decompositions, oscillations, or Besov type difference quotients is established as well. This equivalence, of independent interest, is a key tool in the proof of the relevant embeddings. They also rest upon a new optimal inequality for convolutions in Orlicz spaces.
期刊介绍:
The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.