{"title":"将脂肪酶固定在中药银纳米粒子上并检测固定化酶的生化参数","authors":"Atefeh Nasiri, Marzieh Ghollasi, Khadijeh Eskandari, Elahe Darvishi","doi":"10.1007/s43153-024-00460-0","DOIUrl":null,"url":null,"abstract":"<p>Nanoparticles are useful for immobilization due to their size and physical properties. The present study aimed to synthesize herbal silver nanoparticles (SNPs) to immobilize the lipase from <i>Candida rugosa</i> covalently on the nanoparticles as well as to examine the biochemical parameters of the immobilized enzyme. SNPs were synthesized using <i>Cydonia oblonga</i> leaf extract and were characterized. Lipase enzyme was immobilized on synthesized SNPs and the immobilization efficiency was calculated. The biochemical properties of immobilized and free enzymes, including the temperature effect and pH on enzymatic activity, thermal stability, storage stability, and reusability of the immobilized enzyme were specified. Electron microscopy, DLS measurements, and Raman spectroscopy confirmed the 50 nm SNPs and the immobilization of lipase enzyme on them. The efficiency of lipase enzyme immobilization on nanoparticles was estimated to be 48%. The free enzymes and immobilized enzymes had the highest activity at 37°C and 55°C, respectively. Also, the optimal pH was 7 for the free enzyme and 6 for the immobilized enzyme. A comparison of thermal and storage stability of free and immobilized enzymes suggested that immobilized enzymes had more stability and resistance than free enzymes as they also could be reused up to 12 times. The kinetic parameters of the immobilized enzyme compared to the free enzyme indicated a slight decrease in the maximum rate of the enzyme. Immobilized enzymes can be used in industries and are also very crucial for commercial use as they are cost-effective.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immobilization of lipase enzyme onto herbal silver nanoparticles and examination of biochemical parameters of immobilized enzyme\",\"authors\":\"Atefeh Nasiri, Marzieh Ghollasi, Khadijeh Eskandari, Elahe Darvishi\",\"doi\":\"10.1007/s43153-024-00460-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanoparticles are useful for immobilization due to their size and physical properties. The present study aimed to synthesize herbal silver nanoparticles (SNPs) to immobilize the lipase from <i>Candida rugosa</i> covalently on the nanoparticles as well as to examine the biochemical parameters of the immobilized enzyme. SNPs were synthesized using <i>Cydonia oblonga</i> leaf extract and were characterized. Lipase enzyme was immobilized on synthesized SNPs and the immobilization efficiency was calculated. The biochemical properties of immobilized and free enzymes, including the temperature effect and pH on enzymatic activity, thermal stability, storage stability, and reusability of the immobilized enzyme were specified. Electron microscopy, DLS measurements, and Raman spectroscopy confirmed the 50 nm SNPs and the immobilization of lipase enzyme on them. The efficiency of lipase enzyme immobilization on nanoparticles was estimated to be 48%. The free enzymes and immobilized enzymes had the highest activity at 37°C and 55°C, respectively. Also, the optimal pH was 7 for the free enzyme and 6 for the immobilized enzyme. A comparison of thermal and storage stability of free and immobilized enzymes suggested that immobilized enzymes had more stability and resistance than free enzymes as they also could be reused up to 12 times. The kinetic parameters of the immobilized enzyme compared to the free enzyme indicated a slight decrease in the maximum rate of the enzyme. Immobilized enzymes can be used in industries and are also very crucial for commercial use as they are cost-effective.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s43153-024-00460-0\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43153-024-00460-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Immobilization of lipase enzyme onto herbal silver nanoparticles and examination of biochemical parameters of immobilized enzyme
Nanoparticles are useful for immobilization due to their size and physical properties. The present study aimed to synthesize herbal silver nanoparticles (SNPs) to immobilize the lipase from Candida rugosa covalently on the nanoparticles as well as to examine the biochemical parameters of the immobilized enzyme. SNPs were synthesized using Cydonia oblonga leaf extract and were characterized. Lipase enzyme was immobilized on synthesized SNPs and the immobilization efficiency was calculated. The biochemical properties of immobilized and free enzymes, including the temperature effect and pH on enzymatic activity, thermal stability, storage stability, and reusability of the immobilized enzyme were specified. Electron microscopy, DLS measurements, and Raman spectroscopy confirmed the 50 nm SNPs and the immobilization of lipase enzyme on them. The efficiency of lipase enzyme immobilization on nanoparticles was estimated to be 48%. The free enzymes and immobilized enzymes had the highest activity at 37°C and 55°C, respectively. Also, the optimal pH was 7 for the free enzyme and 6 for the immobilized enzyme. A comparison of thermal and storage stability of free and immobilized enzymes suggested that immobilized enzymes had more stability and resistance than free enzymes as they also could be reused up to 12 times. The kinetic parameters of the immobilized enzyme compared to the free enzyme indicated a slight decrease in the maximum rate of the enzyme. Immobilized enzymes can be used in industries and are also very crucial for commercial use as they are cost-effective.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.