可再生资源优化中的随机产量系数的偶然性约束和偶然性最大化

IF 1.5 4区 农林科学 Q2 FORESTRY
John G. Hof, Brian M. Kent, James B. Pickens
{"title":"可再生资源优化中的随机产量系数的偶然性约束和偶然性最大化","authors":"John G. Hof, Brian M. Kent, James B. Pickens","doi":"10.1093/forestscience/38.2.305","DOIUrl":null,"url":null,"abstract":"This paper treats a variety of approaches to account for random yield coefficients with known means and variances in renewable resource optimization models. General formulations are discussed first, followed by a forestry case example that demonstrates the formulations and resulting optimal solutions in a renewable resource application. Different approaches to approximating the normal cumulative density function are evaluated using simulation. For. Sci. 38(2):305-323.","PeriodicalId":12749,"journal":{"name":"Forest Science","volume":"119 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chance Constraints and Chance Maximization with Random Yield Coefficients in Renewable Resource Optimization\",\"authors\":\"John G. Hof, Brian M. Kent, James B. Pickens\",\"doi\":\"10.1093/forestscience/38.2.305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper treats a variety of approaches to account for random yield coefficients with known means and variances in renewable resource optimization models. General formulations are discussed first, followed by a forestry case example that demonstrates the formulations and resulting optimal solutions in a renewable resource application. Different approaches to approximating the normal cumulative density function are evaluated using simulation. For. Sci. 38(2):305-323.\",\"PeriodicalId\":12749,\"journal\":{\"name\":\"Forest Science\",\"volume\":\"119 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forest Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/forestscience/38.2.305\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/forestscience/38.2.305","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了在可再生资源优化模型中考虑具有已知均值和方差的随机产量系数的各种方法。首先讨论了一般公式,然后以一个林业案例为例,演示了可再生资源应用中的公式和由此产生的最优解。通过模拟对近似正态累积密度函数的不同方法进行了评估。For.科学》38(2):305-323。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chance Constraints and Chance Maximization with Random Yield Coefficients in Renewable Resource Optimization
This paper treats a variety of approaches to account for random yield coefficients with known means and variances in renewable resource optimization models. General formulations are discussed first, followed by a forestry case example that demonstrates the formulations and resulting optimal solutions in a renewable resource application. Different approaches to approximating the normal cumulative density function are evaluated using simulation. For. Sci. 38(2):305-323.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forest Science
Forest Science 农林科学-林学
CiteScore
2.80
自引率
7.10%
发文量
45
审稿时长
3 months
期刊介绍: Forest Science is a peer-reviewed journal publishing fundamental and applied research that explores all aspects of natural and social sciences as they apply to the function and management of the forested ecosystems of the world. Topics include silviculture, forest management, biometrics, economics, entomology & pathology, fire & fuels management, forest ecology, genetics & tree improvement, geospatial technologies, harvesting & utilization, landscape ecology, operations research, forest policy, physiology, recreation, social sciences, soils & hydrology, and wildlife management. Forest Science is published bimonthly in February, April, June, August, October, and December.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信