Cassandra Herbert, Satenik Valesyan, Jennifer Kist, Patrick A. Limbach
{"title":"分析 RNA 及其修饰","authors":"Cassandra Herbert, Satenik Valesyan, Jennifer Kist, Patrick A. Limbach","doi":"10.1146/annurev-anchem-061622-125954","DOIUrl":null,"url":null,"abstract":"Ribonucleic acids (RNAs) are key biomolecules responsible for the transmission of genetic information, the synthesis of proteins, and modulation of many biochemical processes. They are also often the key components of viruses. Synthetic RNAs or oligoribonucleotides are becoming more widely used as therapeutics. In many cases, RNAs will be chemically modified, either naturally via enzymatic systems within a cell or intentionally during their synthesis. Analytical methods to detect, sequence, identify, and quantify RNA and its modifications have demands that far exceed requirements found in the DNA realm. Two complementary platforms have demonstrated their value and utility for the characterization of RNA and its modifications: mass spectrometry and next-generation sequencing. This review highlights recent advances in both platforms, examines their relative strengths and weaknesses, and explores some alternative approaches that lie at the horizon.","PeriodicalId":50758,"journal":{"name":"Annual Review of Analytical Chemistry","volume":"91 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of RNA and Its Modifications\",\"authors\":\"Cassandra Herbert, Satenik Valesyan, Jennifer Kist, Patrick A. Limbach\",\"doi\":\"10.1146/annurev-anchem-061622-125954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ribonucleic acids (RNAs) are key biomolecules responsible for the transmission of genetic information, the synthesis of proteins, and modulation of many biochemical processes. They are also often the key components of viruses. Synthetic RNAs or oligoribonucleotides are becoming more widely used as therapeutics. In many cases, RNAs will be chemically modified, either naturally via enzymatic systems within a cell or intentionally during their synthesis. Analytical methods to detect, sequence, identify, and quantify RNA and its modifications have demands that far exceed requirements found in the DNA realm. Two complementary platforms have demonstrated their value and utility for the characterization of RNA and its modifications: mass spectrometry and next-generation sequencing. This review highlights recent advances in both platforms, examines their relative strengths and weaknesses, and explores some alternative approaches that lie at the horizon.\",\"PeriodicalId\":50758,\"journal\":{\"name\":\"Annual Review of Analytical Chemistry\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-anchem-061622-125954\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1146/annurev-anchem-061622-125954","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
摘要
核糖核酸(RNA)是负责传递遗传信息、合成蛋白质和调节许多生化过程的关键生物大分子。它们通常也是病毒的关键成分。合成 RNA 或寡核苷酸正越来越广泛地用作治疗药物。在许多情况下,RNA 会通过细胞内的酶系统自然或在合成过程中有意进行化学修饰。检测、测序、识别和量化 RNA 及其修饰的分析方法的要求远远超过 DNA 领域的要求。质谱法和新一代测序法这两种互补平台已经证明了它们在表征 RNA 及其修饰方面的价值和实用性。这篇综述重点介绍了这两种平台的最新进展,研究了它们的相对优缺点,并探讨了一些即将出现的替代方法。
Ribonucleic acids (RNAs) are key biomolecules responsible for the transmission of genetic information, the synthesis of proteins, and modulation of many biochemical processes. They are also often the key components of viruses. Synthetic RNAs or oligoribonucleotides are becoming more widely used as therapeutics. In many cases, RNAs will be chemically modified, either naturally via enzymatic systems within a cell or intentionally during their synthesis. Analytical methods to detect, sequence, identify, and quantify RNA and its modifications have demands that far exceed requirements found in the DNA realm. Two complementary platforms have demonstrated their value and utility for the characterization of RNA and its modifications: mass spectrometry and next-generation sequencing. This review highlights recent advances in both platforms, examines their relative strengths and weaknesses, and explores some alternative approaches that lie at the horizon.
期刊介绍:
The Annual Review of Analytical Chemistry, launched in 2008, offers a comprehensive perspective on the field, drawing from diverse disciplines such as biology, physics, and engineering, with analytical chemistry as the central theme. The journal's current volume has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.