原位电化学原子力显微镜:从界面到相间

IF 5.9 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Wei-Wei Wang, Hao Yan, Yu Gu, Jiawei Yan, Bing-Wei Mao
{"title":"原位电化学原子力显微镜:从界面到相间","authors":"Wei-Wei Wang, Hao Yan, Yu Gu, Jiawei Yan, Bing-Wei Mao","doi":"10.1146/annurev-anchem-061422-020428","DOIUrl":null,"url":null,"abstract":"The electrochemical interface formed between an electrode and an electrolyte significantly affects the rate and mechanism of the electrode reaction through its structure and properties, which vary across the interface. The scope of the interface has been expanded, along with the development of energy electrochemistry, where a solid-electrolyte interphase may form on the electrode and the active materials change properties near the surface region. Developing a comprehensive understanding of electrochemical interfaces and interphases necessitates three-dimensional spatial resolution characterization. Atomic force microscopy (AFM) offers advantages of imaging and long-range force measurements. Here we assess the capabilities of AFM by comparing the force curves of different regimes and various imaging modes for in situ characterizing of electrochemical interfaces and interphases. Selected examples of progress on work related to the structures and processes of electrode surfaces, electrical double layers, and lithium battery systems are subsequently illustrated. Finally, this review provides perspectives on the future development of electrochemical AFM.","PeriodicalId":50758,"journal":{"name":"Annual Review of Analytical Chemistry","volume":"1 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Situ Electrochemical Atomic Force Microscopy: From Interfaces to Interphases\",\"authors\":\"Wei-Wei Wang, Hao Yan, Yu Gu, Jiawei Yan, Bing-Wei Mao\",\"doi\":\"10.1146/annurev-anchem-061422-020428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrochemical interface formed between an electrode and an electrolyte significantly affects the rate and mechanism of the electrode reaction through its structure and properties, which vary across the interface. The scope of the interface has been expanded, along with the development of energy electrochemistry, where a solid-electrolyte interphase may form on the electrode and the active materials change properties near the surface region. Developing a comprehensive understanding of electrochemical interfaces and interphases necessitates three-dimensional spatial resolution characterization. Atomic force microscopy (AFM) offers advantages of imaging and long-range force measurements. Here we assess the capabilities of AFM by comparing the force curves of different regimes and various imaging modes for in situ characterizing of electrochemical interfaces and interphases. Selected examples of progress on work related to the structures and processes of electrode surfaces, electrical double layers, and lithium battery systems are subsequently illustrated. Finally, this review provides perspectives on the future development of electrochemical AFM.\",\"PeriodicalId\":50758,\"journal\":{\"name\":\"Annual Review of Analytical Chemistry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-anchem-061422-020428\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1146/annurev-anchem-061422-020428","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

电极与电解质之间形成的电化学界面通过其结构和性质对电极反应的速率和机理产生重大影响,而这些结构和性质在界面上各不相同。随着能源电化学的发展,界面的范围也在不断扩大,电极上可能会形成固体-电解质间相,活性材料在表面区域附近的性质也会发生变化。要全面了解电化学界面和间相,就必须进行三维空间分辨率表征。原子力显微镜(AFM)具有成像和远距离力测量的优势。在此,我们通过比较不同体系的力曲线和各种成像模式来评估原子力显微镜在电化学界面和相间层原位表征方面的能力。随后,我们将举例说明与电极表面、电双层和锂电池系统的结构和过程有关的工作进展。最后,本综述对电化学原子力显微镜的未来发展进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In Situ Electrochemical Atomic Force Microscopy: From Interfaces to Interphases
The electrochemical interface formed between an electrode and an electrolyte significantly affects the rate and mechanism of the electrode reaction through its structure and properties, which vary across the interface. The scope of the interface has been expanded, along with the development of energy electrochemistry, where a solid-electrolyte interphase may form on the electrode and the active materials change properties near the surface region. Developing a comprehensive understanding of electrochemical interfaces and interphases necessitates three-dimensional spatial resolution characterization. Atomic force microscopy (AFM) offers advantages of imaging and long-range force measurements. Here we assess the capabilities of AFM by comparing the force curves of different regimes and various imaging modes for in situ characterizing of electrochemical interfaces and interphases. Selected examples of progress on work related to the structures and processes of electrode surfaces, electrical double layers, and lithium battery systems are subsequently illustrated. Finally, this review provides perspectives on the future development of electrochemical AFM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Analytical Chemistry
Annual Review of Analytical Chemistry CHEMISTRY, ANALYTICAL-SPECTROSCOPY
CiteScore
14.80
自引率
1.20%
发文量
15
期刊介绍: The Annual Review of Analytical Chemistry, launched in 2008, offers a comprehensive perspective on the field, drawing from diverse disciplines such as biology, physics, and engineering, with analytical chemistry as the central theme. The journal's current volume has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信