{"title":"家蝇种群阶段结构模型中的超临界霍普夫分岔","authors":"Xiangming Zhang, Mengmeng Hou, Hai-Feng Huo","doi":"10.1142/s1793524523501164","DOIUrl":null,"url":null,"abstract":"<p>Insect populations, which are diverse and widespread, provide a principal area of utilization of the stage-structured modeling approach. In this paper, housefly populations incorporating a stage-structured model are investigated theoretically and graphically. First, stability charts and rightmost characteristic roots of the positive equilibrium are elucidated analytically and numerically. Furthermore, the Hopf bifurcation at the positive equilibrium is derived employing geometric stability switch criterion. Second, the properties of Hopf bifurcation are determined using the center manifold theorem and by reducing the equation to the Poincaré normal form. Finally, the correctness of the theoretical derivation is confirmed using a numerical simulation based on specific parameter values. Our results show that with an increase in delay <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>τ</mi></math></span><span></span>, the unique positive equilibrium may undergo two stability switches: from stable to unstable, and from unstable to stable. Interestingly, the characteristic equation has pure imaginary roots at the second pair and subsequent critical values. However, Hopf bifurcation theorem is not satisfied because all other characteristic roots of the characteristic equation at these critical values do not have strictly negative real parts, except the pure imaginary roots. We also simulate the unstable periodic solutions at the second pair of critical values through a bifurcation diagram. Therefore, a pair of supercritical Hopf bifurcations appear around the positive equilibrium of the housefly population stage-structured model.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supercritical Hopf bifurcations in the stage-structured model of housefly populations\",\"authors\":\"Xiangming Zhang, Mengmeng Hou, Hai-Feng Huo\",\"doi\":\"10.1142/s1793524523501164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Insect populations, which are diverse and widespread, provide a principal area of utilization of the stage-structured modeling approach. In this paper, housefly populations incorporating a stage-structured model are investigated theoretically and graphically. First, stability charts and rightmost characteristic roots of the positive equilibrium are elucidated analytically and numerically. Furthermore, the Hopf bifurcation at the positive equilibrium is derived employing geometric stability switch criterion. Second, the properties of Hopf bifurcation are determined using the center manifold theorem and by reducing the equation to the Poincaré normal form. Finally, the correctness of the theoretical derivation is confirmed using a numerical simulation based on specific parameter values. Our results show that with an increase in delay <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>τ</mi></math></span><span></span>, the unique positive equilibrium may undergo two stability switches: from stable to unstable, and from unstable to stable. Interestingly, the characteristic equation has pure imaginary roots at the second pair and subsequent critical values. However, Hopf bifurcation theorem is not satisfied because all other characteristic roots of the characteristic equation at these critical values do not have strictly negative real parts, except the pure imaginary roots. We also simulate the unstable periodic solutions at the second pair of critical values through a bifurcation diagram. Therefore, a pair of supercritical Hopf bifurcations appear around the positive equilibrium of the housefly population stage-structured model.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793524523501164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793524523501164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Supercritical Hopf bifurcations in the stage-structured model of housefly populations
Insect populations, which are diverse and widespread, provide a principal area of utilization of the stage-structured modeling approach. In this paper, housefly populations incorporating a stage-structured model are investigated theoretically and graphically. First, stability charts and rightmost characteristic roots of the positive equilibrium are elucidated analytically and numerically. Furthermore, the Hopf bifurcation at the positive equilibrium is derived employing geometric stability switch criterion. Second, the properties of Hopf bifurcation are determined using the center manifold theorem and by reducing the equation to the Poincaré normal form. Finally, the correctness of the theoretical derivation is confirmed using a numerical simulation based on specific parameter values. Our results show that with an increase in delay , the unique positive equilibrium may undergo two stability switches: from stable to unstable, and from unstable to stable. Interestingly, the characteristic equation has pure imaginary roots at the second pair and subsequent critical values. However, Hopf bifurcation theorem is not satisfied because all other characteristic roots of the characteristic equation at these critical values do not have strictly negative real parts, except the pure imaginary roots. We also simulate the unstable periodic solutions at the second pair of critical values through a bifurcation diagram. Therefore, a pair of supercritical Hopf bifurcations appear around the positive equilibrium of the housefly population stage-structured model.