{"title":"监测多元时间序列中的协方差:比较机器学习和统计方法","authors":"Derek Weix, Tzahi Y. Cath, Amanda S. Hering","doi":"10.1002/qre.3551","DOIUrl":null,"url":null,"abstract":"In complex systems with multiple variables monitored at high‐frequency, variables are not only temporally autocorrelated, but they may also be nonlinearly related or exhibit nonstationarity as the inputs or operation changes. One approach to handling such variables is to detrend them prior to monitoring and then apply control charts that assume independence and stationarity to the residuals. Monitoring controlled systems is even more challenging because the control strategy seeks to maintain variables at prespecified mean levels, and to compensate, correlations among variables may change, making monitoring the covariance essential. In this paper, a vector autoregressive model (VAR) is compared with a multivariate random forest (MRF) and a neural network (NN) for detrending multivariate time series prior to monitoring the covariance of the residuals using a multivariate exponentially weighted moving average (MEWMA) control chart. Machine learning models have an advantage when the data's structure is unknown or may change. We design a novel simulation study with nonlinear, nonstationary, and autocorrelated data to compare the different detrending models and subsequent covariance monitoring. The machine learning models have superior performance for nonlinear and strongly autocorrelated data and similar performance for linear data. An illustration with data from a reverse osmosis process is given.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring covariance in multivariate time series: Comparing machine learning and statistical approaches\",\"authors\":\"Derek Weix, Tzahi Y. Cath, Amanda S. Hering\",\"doi\":\"10.1002/qre.3551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In complex systems with multiple variables monitored at high‐frequency, variables are not only temporally autocorrelated, but they may also be nonlinearly related or exhibit nonstationarity as the inputs or operation changes. One approach to handling such variables is to detrend them prior to monitoring and then apply control charts that assume independence and stationarity to the residuals. Monitoring controlled systems is even more challenging because the control strategy seeks to maintain variables at prespecified mean levels, and to compensate, correlations among variables may change, making monitoring the covariance essential. In this paper, a vector autoregressive model (VAR) is compared with a multivariate random forest (MRF) and a neural network (NN) for detrending multivariate time series prior to monitoring the covariance of the residuals using a multivariate exponentially weighted moving average (MEWMA) control chart. Machine learning models have an advantage when the data's structure is unknown or may change. We design a novel simulation study with nonlinear, nonstationary, and autocorrelated data to compare the different detrending models and subsequent covariance monitoring. The machine learning models have superior performance for nonlinear and strongly autocorrelated data and similar performance for linear data. An illustration with data from a reverse osmosis process is given.\",\"PeriodicalId\":56088,\"journal\":{\"name\":\"Quality and Reliability Engineering International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality and Reliability Engineering International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/qre.3551\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3551","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Monitoring covariance in multivariate time series: Comparing machine learning and statistical approaches
In complex systems with multiple variables monitored at high‐frequency, variables are not only temporally autocorrelated, but they may also be nonlinearly related or exhibit nonstationarity as the inputs or operation changes. One approach to handling such variables is to detrend them prior to monitoring and then apply control charts that assume independence and stationarity to the residuals. Monitoring controlled systems is even more challenging because the control strategy seeks to maintain variables at prespecified mean levels, and to compensate, correlations among variables may change, making monitoring the covariance essential. In this paper, a vector autoregressive model (VAR) is compared with a multivariate random forest (MRF) and a neural network (NN) for detrending multivariate time series prior to monitoring the covariance of the residuals using a multivariate exponentially weighted moving average (MEWMA) control chart. Machine learning models have an advantage when the data's structure is unknown or may change. We design a novel simulation study with nonlinear, nonstationary, and autocorrelated data to compare the different detrending models and subsequent covariance monitoring. The machine learning models have superior performance for nonlinear and strongly autocorrelated data and similar performance for linear data. An illustration with data from a reverse osmosis process is given.
期刊介绍:
Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering.
Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies.
The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal.
Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry.
Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.