{"title":"论梯度下降法学习的过参数化深度神经网络估计的普遍一致性","authors":"Selina Drews, Michael Kohler","doi":"10.1007/s10463-024-00898-6","DOIUrl":null,"url":null,"abstract":"<div><p>Estimation of a multivariate regression function from independent and identically distributed data is considered. An estimate is defined which fits a deep neural network consisting of a large number of fully connected neural networks, which are computed in parallel, via gradient descent to the data. The estimate is over-parametrized in the sense that the number of its parameters is much larger than the sample size. It is shown that with a suitable random initialization of the network, a sufficiently small gradient descent step size, and a number of gradient descent steps that slightly exceed the reciprocal of this step size, the estimate is universally consistent. This means that the expected <span>\\(L_2\\)</span> error converges to zero for all distributions of the data where the response variable is square integrable.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the universal consistency of an over-parametrized deep neural network estimate learned by gradient descent\",\"authors\":\"Selina Drews, Michael Kohler\",\"doi\":\"10.1007/s10463-024-00898-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Estimation of a multivariate regression function from independent and identically distributed data is considered. An estimate is defined which fits a deep neural network consisting of a large number of fully connected neural networks, which are computed in parallel, via gradient descent to the data. The estimate is over-parametrized in the sense that the number of its parameters is much larger than the sample size. It is shown that with a suitable random initialization of the network, a sufficiently small gradient descent step size, and a number of gradient descent steps that slightly exceed the reciprocal of this step size, the estimate is universally consistent. This means that the expected <span>\\\\(L_2\\\\)</span> error converges to zero for all distributions of the data where the response variable is square integrable.</p></div>\",\"PeriodicalId\":55511,\"journal\":{\"name\":\"Annals of the Institute of Statistical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the Institute of Statistical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10463-024-00898-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-024-00898-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
On the universal consistency of an over-parametrized deep neural network estimate learned by gradient descent
Estimation of a multivariate regression function from independent and identically distributed data is considered. An estimate is defined which fits a deep neural network consisting of a large number of fully connected neural networks, which are computed in parallel, via gradient descent to the data. The estimate is over-parametrized in the sense that the number of its parameters is much larger than the sample size. It is shown that with a suitable random initialization of the network, a sufficiently small gradient descent step size, and a number of gradient descent steps that slightly exceed the reciprocal of this step size, the estimate is universally consistent. This means that the expected \(L_2\) error converges to zero for all distributions of the data where the response variable is square integrable.
期刊介绍:
Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.