估计两个正态均值中较大的可疑值

IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY
Metrika Pub Date : 2024-04-04 DOI:10.1007/s00184-024-00961-5
Courtney Drew, Éric Marchand
{"title":"估计两个正态均值中较大的可疑值","authors":"Courtney Drew, Éric Marchand","doi":"10.1007/s00184-024-00961-5","DOIUrl":null,"url":null,"abstract":"<p>For <span>\\(X_1, X_2\\)</span> independently and normally distributed with means <span>\\(\\theta _1\\)</span> and <span>\\(\\theta _2\\)</span>, variances <span>\\(\\sigma ^2_1\\)</span> and <span>\\(\\sigma ^2_2\\)</span>, we consider Bayesian inference about <span>\\(\\theta _1\\)</span> with the difference <span>\\(\\theta _1-\\theta _2\\)</span> being lower-bounded by an uncertain <i>m</i>. We obtain a class of minimax Bayes estimators of <span>\\(\\theta _1\\)</span>, based on a posterior distribution for <span>\\((\\theta _1, \\theta _2)^{\\top }\\)</span> taking values on <span>\\(\\mathbb {R}^2\\)</span>, which dominate the unrestricted MLE under squared error loss for <span>\\(\\theta _1-\\theta _2 \\ge 0\\)</span>. We also construct and study an ad hoc credible set for <span>\\(\\theta _1\\)</span> with approximate credibility <span>\\(1-\\alpha \\)</span> and provide numerical evidence of its frequentist coverage probability closely matching the nominal credibility level. A spending function is incorporated which further increases the coverage.</p>","PeriodicalId":49821,"journal":{"name":"Metrika","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating the suspected larger of two normal means\",\"authors\":\"Courtney Drew, Éric Marchand\",\"doi\":\"10.1007/s00184-024-00961-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For <span>\\\\(X_1, X_2\\\\)</span> independently and normally distributed with means <span>\\\\(\\\\theta _1\\\\)</span> and <span>\\\\(\\\\theta _2\\\\)</span>, variances <span>\\\\(\\\\sigma ^2_1\\\\)</span> and <span>\\\\(\\\\sigma ^2_2\\\\)</span>, we consider Bayesian inference about <span>\\\\(\\\\theta _1\\\\)</span> with the difference <span>\\\\(\\\\theta _1-\\\\theta _2\\\\)</span> being lower-bounded by an uncertain <i>m</i>. We obtain a class of minimax Bayes estimators of <span>\\\\(\\\\theta _1\\\\)</span>, based on a posterior distribution for <span>\\\\((\\\\theta _1, \\\\theta _2)^{\\\\top }\\\\)</span> taking values on <span>\\\\(\\\\mathbb {R}^2\\\\)</span>, which dominate the unrestricted MLE under squared error loss for <span>\\\\(\\\\theta _1-\\\\theta _2 \\\\ge 0\\\\)</span>. We also construct and study an ad hoc credible set for <span>\\\\(\\\\theta _1\\\\)</span> with approximate credibility <span>\\\\(1-\\\\alpha \\\\)</span> and provide numerical evidence of its frequentist coverage probability closely matching the nominal credibility level. A spending function is incorporated which further increases the coverage.</p>\",\"PeriodicalId\":49821,\"journal\":{\"name\":\"Metrika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00184-024-00961-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-024-00961-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

对于 \(X_1, X_2\) 独立正态分布,具有均值 \(\theta _1\) 和 \(\theta _2\), 方差 \(\sigma ^2_1\) 和 \(\sigma ^2_2\)、我们考虑用贝叶斯推理来推断差值 \(\theta _1-\theta _2\) 被不确定的 m 限定。我们基于取值于 \(\mathbb {R}^2\) 的 \((\theta _1, \theta _2)^\{top }\) 的后验分布得到了一类 \(\theta _1\(\theta _1, \theta _2)^\{top }\) 的最小贝叶斯估计值,这些估计值在 \(\theta _1-\theta _2 \ge 0\) 的平方误差损失下支配了无限制的 MLE。我们还为 \(theta _1-\theta _2\ge 0\) 构造并研究了一个近似可信度为 \(1-\alpha \)的特设可信集,并提供了其频数覆盖概率与名义可信度密切匹配的数值证据。支出函数的加入进一步提高了覆盖率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Estimating the suspected larger of two normal means

Estimating the suspected larger of two normal means

For \(X_1, X_2\) independently and normally distributed with means \(\theta _1\) and \(\theta _2\), variances \(\sigma ^2_1\) and \(\sigma ^2_2\), we consider Bayesian inference about \(\theta _1\) with the difference \(\theta _1-\theta _2\) being lower-bounded by an uncertain m. We obtain a class of minimax Bayes estimators of \(\theta _1\), based on a posterior distribution for \((\theta _1, \theta _2)^{\top }\) taking values on \(\mathbb {R}^2\), which dominate the unrestricted MLE under squared error loss for \(\theta _1-\theta _2 \ge 0\). We also construct and study an ad hoc credible set for \(\theta _1\) with approximate credibility \(1-\alpha \) and provide numerical evidence of its frequentist coverage probability closely matching the nominal credibility level. A spending function is incorporated which further increases the coverage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metrika
Metrika 数学-统计学与概率论
CiteScore
1.50
自引率
14.30%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Metrika is an international journal for theoretical and applied statistics. Metrika publishes original research papers in the field of mathematical statistics and statistical methods. Great importance is attached to new developments in theoretical statistics, statistical modeling and to actual innovative applicability of the proposed statistical methods and results. Topics of interest include, without being limited to, multivariate analysis, high dimensional statistics and nonparametric statistics; categorical data analysis and latent variable models; reliability, lifetime data analysis and statistics in engineering sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信