约束无定四面体的三面体

IF 0.6 3区 数学 Q3 MATHEMATICS
Marco Golla, Kyle Larson
{"title":"约束无定四面体的三面体","authors":"Marco Golla, Kyle Larson","doi":"10.4310/mrl.2023.v30.n4.a4","DOIUrl":null,"url":null,"abstract":"We produce a rational homology 3‑sphere that does not smoothly bound either a positive <i>or</i> negative definite 4‑manifold. Such a 3‑manifold necessarily cannot be rational homology cobordant to a Seifert fibered space or any 3‑manifold obtained by Dehn surgery on a knot. The proof requires an analysis of short characteristic covectors in bimodular lattices.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3-manifolds that bound no definite 4-manifolds\",\"authors\":\"Marco Golla, Kyle Larson\",\"doi\":\"10.4310/mrl.2023.v30.n4.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We produce a rational homology 3‑sphere that does not smoothly bound either a positive <i>or</i> negative definite 4‑manifold. Such a 3‑manifold necessarily cannot be rational homology cobordant to a Seifert fibered space or any 3‑manifold obtained by Dehn surgery on a knot. The proof requires an analysis of short characteristic covectors in bimodular lattices.\",\"PeriodicalId\":49857,\"journal\":{\"name\":\"Mathematical Research Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Research Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2023.v30.n4.a4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n4.a4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个合理同构的 3 球体,它不会平滑地约束正定或负定 4-manifold。这样的 3-manifold必然不能与 Seifert 纤维空间或任何通过对结进行 Dehn 手术得到的 3-manifold是合理同调的。要证明这一点,需要对双模网格中的短特征向量进行分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3-manifolds that bound no definite 4-manifolds
We produce a rational homology 3‑sphere that does not smoothly bound either a positive or negative definite 4‑manifold. Such a 3‑manifold necessarily cannot be rational homology cobordant to a Seifert fibered space or any 3‑manifold obtained by Dehn surgery on a knot. The proof requires an analysis of short characteristic covectors in bimodular lattices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
9
审稿时长
6.0 months
期刊介绍: Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信