{"title":"圆柱形波导中边界阻尼波的多项式急剧衰减","authors":"Ruoyu P. T. Wang","doi":"10.4310/mrl.2023.v30.n4.a10","DOIUrl":null,"url":null,"abstract":"We study the decay of global energy for the wave equation with Hölder continuous damping placed on the $C^{1,1}$-boundary of compact and non-compact waveguides with star-shaped cross-sections. We show there is sharp $t^{-1/2}$-decay when the damping is uniformly bounded from below on the cylindrical wall of product cylinders where the Geometric Control Condition is violated. On non-product cylinders, we also show that there is $t^{-1/3}$-decay when the damping is uniformly bounded from below on the cylindrical wall.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp polynomial decay for waves damped from the boundary in cylindrical waveguides\",\"authors\":\"Ruoyu P. T. Wang\",\"doi\":\"10.4310/mrl.2023.v30.n4.a10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the decay of global energy for the wave equation with Hölder continuous damping placed on the $C^{1,1}$-boundary of compact and non-compact waveguides with star-shaped cross-sections. We show there is sharp $t^{-1/2}$-decay when the damping is uniformly bounded from below on the cylindrical wall of product cylinders where the Geometric Control Condition is violated. On non-product cylinders, we also show that there is $t^{-1/3}$-decay when the damping is uniformly bounded from below on the cylindrical wall.\",\"PeriodicalId\":49857,\"journal\":{\"name\":\"Mathematical Research Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Research Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2023.v30.n4.a10\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n4.a10","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Sharp polynomial decay for waves damped from the boundary in cylindrical waveguides
We study the decay of global energy for the wave equation with Hölder continuous damping placed on the $C^{1,1}$-boundary of compact and non-compact waveguides with star-shaped cross-sections. We show there is sharp $t^{-1/2}$-decay when the damping is uniformly bounded from below on the cylindrical wall of product cylinders where the Geometric Control Condition is violated. On non-product cylinders, we also show that there is $t^{-1/3}$-decay when the damping is uniformly bounded from below on the cylindrical wall.
期刊介绍:
Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.