{"title":"不精确顺序同调法中克雷洛夫方法的双鞍点预处理","authors":"John W. Pearson, Andreas Potschka","doi":"10.1002/nla.2553","DOIUrl":null,"url":null,"abstract":"We derive an extension of the sequential homotopy method that allows for the application of inexact solvers for the linear (double) saddle-point systems arising in the local semismooth Newton method for the homotopy subproblems. For the class of problems that exhibit (after suitable partitioning of the variables) a zero in the off-diagonal blocks of the Hessian of the Lagrangian, we propose and analyze an efficient, parallelizable, symmetric positive definite preconditioner based on a double Schur complement approach. For discretized optimal control problems with PDE constraints, this structure is often present with the canonical partitioning of the variables in states and controls. We conclude with numerical results for a badly conditioned and highly nonlinear benchmark optimization problem with elliptic partial differential equations and control bounds. The resulting method allows for the parallel solution of large 3D problems.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":"15 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double saddle-point preconditioning for Krylov methods in the inexact sequential homotopy method\",\"authors\":\"John W. Pearson, Andreas Potschka\",\"doi\":\"10.1002/nla.2553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive an extension of the sequential homotopy method that allows for the application of inexact solvers for the linear (double) saddle-point systems arising in the local semismooth Newton method for the homotopy subproblems. For the class of problems that exhibit (after suitable partitioning of the variables) a zero in the off-diagonal blocks of the Hessian of the Lagrangian, we propose and analyze an efficient, parallelizable, symmetric positive definite preconditioner based on a double Schur complement approach. For discretized optimal control problems with PDE constraints, this structure is often present with the canonical partitioning of the variables in states and controls. We conclude with numerical results for a badly conditioned and highly nonlinear benchmark optimization problem with elliptic partial differential equations and control bounds. The resulting method allows for the parallel solution of large 3D problems.\",\"PeriodicalId\":49731,\"journal\":{\"name\":\"Numerical Linear Algebra with Applications\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Linear Algebra with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/nla.2553\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2553","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Double saddle-point preconditioning for Krylov methods in the inexact sequential homotopy method
We derive an extension of the sequential homotopy method that allows for the application of inexact solvers for the linear (double) saddle-point systems arising in the local semismooth Newton method for the homotopy subproblems. For the class of problems that exhibit (after suitable partitioning of the variables) a zero in the off-diagonal blocks of the Hessian of the Lagrangian, we propose and analyze an efficient, parallelizable, symmetric positive definite preconditioner based on a double Schur complement approach. For discretized optimal control problems with PDE constraints, this structure is often present with the canonical partitioning of the variables in states and controls. We conclude with numerical results for a badly conditioned and highly nonlinear benchmark optimization problem with elliptic partial differential equations and control bounds. The resulting method allows for the parallel solution of large 3D problems.
期刊介绍:
Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review.
Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects.
Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.