随机扰动图中汉密尔顿循环的平方

Julia Böttcher, Olaf Parczyk, Amedeo Sgueglia, Jozef Skokan
{"title":"随机扰动图中汉密尔顿循环的平方","authors":"Julia Böttcher, Olaf Parczyk, Amedeo Sgueglia, Jozef Skokan","doi":"10.1002/rsa.21215","DOIUrl":null,"url":null,"abstract":"We investigate the appearance of the square of a Hamilton cycle in the model of randomly perturbed graphs, which is, for a given <span data-altimg=\"/cms/asset/2a01f103-ed02-475c-9849-35ae2fdcdde2/rsa21215-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"8\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/rsa21215-math-0001.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,8\" data-semantic-content=\"1\" data-semantic- data-semantic-role=\"element\" data-semantic-speech=\"alpha element of left parenthesis 0 comma 1 right parenthesis\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"infixop,∈\" data-semantic-parent=\"9\" data-semantic-role=\"element\" data-semantic-type=\"operator\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"7\" data-semantic-content=\"2,6\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"3,4,5\" data-semantic-content=\"4\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"7\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\" rspace=\"3\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:rsa:media:rsa21215:rsa21215-math-0001\" display=\"inline\" location=\"graphic/rsa21215-math-0001.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,8\" data-semantic-content=\"1\" data-semantic-role=\"element\" data-semantic-speech=\"alpha element of left parenthesis 0 comma 1 right parenthesis\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"9\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">α</mi><mo data-semantic-=\"\" data-semantic-operator=\"infixop,∈\" data-semantic-parent=\"9\" data-semantic-role=\"element\" data-semantic-type=\"operator\">∈</mo><mrow data-semantic-=\"\" data-semantic-children=\"7\" data-semantic-content=\"2,6\" data-semantic-parent=\"9\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mrow data-semantic-=\"\" data-semantic-children=\"3,4,5\" data-semantic-content=\"4\" data-semantic-parent=\"8\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\">0</mn><mo data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"7\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\">,</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow></mrow>$$ \\alpha \\in \\left(0,1\\right) $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, the union of any <span data-altimg=\"/cms/asset/cd59fc67-b895-4030-b2c8-50cdb8511c4c/rsa21215-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"9\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/rsa21215-math-0002.png\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"n\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:rsa:media:rsa21215:rsa21215-math-0002\" display=\"inline\" location=\"graphic/rsa21215-math-0002.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"n\" data-semantic-type=\"identifier\">n</mi></mrow>$$ n $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>-vertex graph with minimum degree <span data-altimg=\"/cms/asset/4f259a11-d89b-4ca2-9714-f5e38c71b554/rsa21215-math-0003.png\"></span><mjx-container ctxtmenu_counter=\"10\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/rsa21215-math-0003.png\"><mjx-semantics><mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"2\" data-semantic- data-semantic-role=\"implicit\" data-semantic-speech=\"alpha n\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:rsa:media:rsa21215:rsa21215-math-0003\" display=\"inline\" location=\"graphic/rsa21215-math-0003.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"2\" data-semantic-role=\"implicit\" data-semantic-speech=\"alpha n\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">α</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">n</mi></mrow>$$ \\alpha n $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and the binomial random graph <span data-altimg=\"/cms/asset/5f0b9f76-2a29-4553-8365-5f8a9186a964/rsa21215-math-0004.png\"></span><mjx-container ctxtmenu_counter=\"11\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/rsa21215-math-0004.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,7\" data-semantic-content=\"8,0\" data-semantic- data-semantic-role=\"simple function\" data-semantic-speech=\"upper G left parenthesis n comma p right parenthesis\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"9\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"9\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"6\" data-semantic-content=\"1,5\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"2,3,4\" data-semantic-content=\"3\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"6\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\" rspace=\"3\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:rsa:media:rsa21215:rsa21215-math-0004\" display=\"inline\" location=\"graphic/rsa21215-math-0004.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,7\" data-semantic-content=\"8,0\" data-semantic-role=\"simple function\" data-semantic-speech=\"upper G left parenthesis n comma p right parenthesis\" data-semantic-type=\"appl\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-operator=\"appl\" data-semantic-parent=\"9\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\">G</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"appl\" data-semantic-parent=\"9\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\">⁡</mo><mrow data-semantic-=\"\" data-semantic-children=\"6\" data-semantic-content=\"1,5\" data-semantic-parent=\"9\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mrow data-semantic-=\"\" data-semantic-children=\"2,3,4\" data-semantic-content=\"3\" data-semantic-parent=\"7\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">n</mi><mo data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"6\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\">,</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">p</mi></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow></mrow>$$ G\\left(n,p\\right) $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. This is known when <span data-altimg=\"/cms/asset/50ecd920-e267-424b-a655-dfdb65e8dc46/rsa21215-math-0005.png\"></span><mjx-container ctxtmenu_counter=\"12\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/rsa21215-math-0005.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,5\" data-semantic-content=\"1\" data-semantic- data-semantic-role=\"inequality\" data-semantic-speech=\"alpha greater than 1 divided by 2\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,&gt;\" data-semantic-parent=\"6\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"5\" data-semantic-role=\"division\" data-semantic-type=\"operator\" rspace=\"1\" space=\"1\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:rsa:media:rsa21215:rsa21215-math-0005\" display=\"inline\" location=\"graphic/rsa21215-math-0005.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,5\" data-semantic-content=\"1\" data-semantic-role=\"inequality\" data-semantic-speech=\"alpha greater than 1 divided by 2\" data-semantic-type=\"relseq\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"6\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">α</mi><mo data-semantic-=\"\" data-semantic-operator=\"relseq,&gt;\" data-semantic-parent=\"6\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\">&gt;</mo><mrow data-semantic-=\"\" data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"infixop\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn><mo data-semantic-=\"\" data-semantic-operator=\"infixop,/\" data-semantic-parent=\"5\" data-semantic-role=\"division\" data-semantic-type=\"operator\" stretchy=\"false\">/</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></mrow></mrow>$$ \\alpha &gt;1/2 $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and we determine the exact perturbed threshold probability in all the remaining cases, that is, for each <span data-altimg=\"/cms/asset/66a291c0-29b5-4d39-b82b-0cf5158b26d6/rsa21215-math-0006.png\"></span><mjx-container ctxtmenu_counter=\"13\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/rsa21215-math-0006.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,5\" data-semantic-content=\"1\" data-semantic- data-semantic-role=\"inequality\" data-semantic-speech=\"alpha less than or equals 1 divided by 2\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,≤\" data-semantic-parent=\"6\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"5\" data-semantic-role=\"division\" data-semantic-type=\"operator\" rspace=\"1\" space=\"1\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:rsa:media:rsa21215:rsa21215-math-0006\" display=\"inline\" location=\"graphic/rsa21215-math-0006.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,5\" data-semantic-content=\"1\" data-semantic-role=\"inequality\" data-semantic-speech=\"alpha less than or equals 1 divided by 2\" data-semantic-type=\"relseq\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"6\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">α</mi><mo data-semantic-=\"\" data-semantic-operator=\"relseq,≤\" data-semantic-parent=\"6\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\">≤</mo><mrow data-semantic-=\"\" data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"infixop\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn><mo data-semantic-=\"\" data-semantic-operator=\"infixop,/\" data-semantic-parent=\"5\" data-semantic-role=\"division\" data-semantic-type=\"operator\" stretchy=\"false\">/</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></mrow></mrow>$$ \\alpha \\le 1/2 $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. We demonstrate that, as <span data-altimg=\"/cms/asset/619ffd69-bc20-4588-89c1-2e6bd4d50c86/rsa21215-math-0007.png\"></span><mjx-container ctxtmenu_counter=\"14\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/rsa21215-math-0007.png\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"alpha\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:rsa:media:rsa21215:rsa21215-math-0007\" display=\"inline\" location=\"graphic/rsa21215-math-0007.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"greekletter\" data-semantic-speech=\"alpha\" data-semantic-type=\"identifier\">α</mi></mrow>$$ \\alpha $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> ranges over the interval <span data-altimg=\"/cms/asset/9b00cc24-7e17-407f-aef0-bced955f9ee1/rsa21215-math-0008.png\"></span><mjx-container ctxtmenu_counter=\"15\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/rsa21215-math-0008.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"5\" data-semantic-content=\"0,4\" data-semantic- data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis 0 comma 1 right parenthesis\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"1,2,3\" data-semantic-content=\"2\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"5\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\" rspace=\"3\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:rsa:media:rsa21215:rsa21215-math-0008\" display=\"inline\" location=\"graphic/rsa21215-math-0008.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"5\" data-semantic-content=\"0,4\" data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis 0 comma 1 right parenthesis\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mrow data-semantic-=\"\" data-semantic-children=\"1,2,3\" data-semantic-content=\"2\" data-semantic-parent=\"6\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\">0</mn><mo data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"5\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\">,</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"6\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow>$$ \\left(0,1\\right) $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, the threshold performs a countably infinite number of ‘jumps’. Our result has implications on the perturbed threshold for two-universality, where we also fully address all open cases.","PeriodicalId":20948,"journal":{"name":"Random Structures and Algorithms","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The square of a Hamilton cycle in randomly perturbed graphs\",\"authors\":\"Julia Böttcher, Olaf Parczyk, Amedeo Sgueglia, Jozef Skokan\",\"doi\":\"10.1002/rsa.21215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the appearance of the square of a Hamilton cycle in the model of randomly perturbed graphs, which is, for a given <span data-altimg=\\\"/cms/asset/2a01f103-ed02-475c-9849-35ae2fdcdde2/rsa21215-math-0001.png\\\"></span><mjx-container ctxtmenu_counter=\\\"8\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/rsa21215-math-0001.png\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"0,8\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-role=\\\"element\\\" data-semantic-speech=\\\"alpha element of left parenthesis 0 comma 1 right parenthesis\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,∈\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"element\\\" data-semantic-type=\\\"operator\\\" rspace=\\\"5\\\" space=\\\"5\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"7\\\" data-semantic-content=\\\"2,6\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"3,4,5\\\" data-semantic-content=\\\"4\\\" data-semantic- data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"sequence\\\" data-semantic-type=\\\"punctuated\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\" rspace=\\\"3\\\" style=\\\"margin-left: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:rsa:media:rsa21215:rsa21215-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/rsa21215-math-0001.png\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"0,8\\\" data-semantic-content=\\\"1\\\" data-semantic-role=\\\"element\\\" data-semantic-speech=\\\"alpha element of left parenthesis 0 comma 1 right parenthesis\\\" data-semantic-type=\\\"infixop\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\">α</mi><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"infixop,∈\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"element\\\" data-semantic-type=\\\"operator\\\">∈</mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"7\\\" data-semantic-content=\\\"2,6\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">(</mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"3,4,5\\\" data-semantic-content=\\\"4\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"sequence\\\" data-semantic-type=\\\"punctuated\\\"><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">0</mn><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\">,</mo><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">1</mn></mrow><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">)</mo></mrow></mrow>$$ \\\\alpha \\\\in \\\\left(0,1\\\\right) $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, the union of any <span data-altimg=\\\"/cms/asset/cd59fc67-b895-4030-b2c8-50cdb8511c4c/rsa21215-math-0002.png\\\"></span><mjx-container ctxtmenu_counter=\\\"9\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/rsa21215-math-0002.png\\\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"n\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:rsa:media:rsa21215:rsa21215-math-0002\\\" display=\\\"inline\\\" location=\\\"graphic/rsa21215-math-0002.png\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"n\\\" data-semantic-type=\\\"identifier\\\">n</mi></mrow>$$ n $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>-vertex graph with minimum degree <span data-altimg=\\\"/cms/asset/4f259a11-d89b-4ca2-9714-f5e38c71b554/rsa21215-math-0003.png\\\"></span><mjx-container ctxtmenu_counter=\\\"10\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/rsa21215-math-0003.png\\\"><mjx-semantics><mjx-mrow data-semantic-annotation=\\\"clearspeak:simple;clearspeak:unit\\\" data-semantic-children=\\\"0,1\\\" data-semantic-content=\\\"2\\\" data-semantic- data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"alpha n\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:rsa:media:rsa21215:rsa21215-math-0003\\\" display=\\\"inline\\\" location=\\\"graphic/rsa21215-math-0003.png\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple;clearspeak:unit\\\" data-semantic-children=\\\"0,1\\\" data-semantic-content=\\\"2\\\" data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"alpha n\\\" data-semantic-type=\\\"infixop\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\">α</mi><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\">⁢</mo><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">n</mi></mrow>$$ \\\\alpha n $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and the binomial random graph <span data-altimg=\\\"/cms/asset/5f0b9f76-2a29-4553-8365-5f8a9186a964/rsa21215-math-0004.png\\\"></span><mjx-container ctxtmenu_counter=\\\"11\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/rsa21215-math-0004.png\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"0,7\\\" data-semantic-content=\\\"8,0\\\" data-semantic- data-semantic-role=\\\"simple function\\\" data-semantic-speech=\\\"upper G left parenthesis n comma p right parenthesis\\\" data-semantic-type=\\\"appl\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"6\\\" data-semantic-content=\\\"1,5\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"2,3,4\\\" data-semantic-content=\\\"3\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"sequence\\\" data-semantic-type=\\\"punctuated\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\" rspace=\\\"3\\\" style=\\\"margin-left: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:rsa:media:rsa21215:rsa21215-math-0004\\\" display=\\\"inline\\\" location=\\\"graphic/rsa21215-math-0004.png\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"0,7\\\" data-semantic-content=\\\"8,0\\\" data-semantic-role=\\\"simple function\\\" data-semantic-speech=\\\"upper G left parenthesis n comma p right parenthesis\\\" data-semantic-type=\\\"appl\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"identifier\\\">G</mi><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\">⁡</mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"6\\\" data-semantic-content=\\\"1,5\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">(</mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"2,3,4\\\" data-semantic-content=\\\"3\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"sequence\\\" data-semantic-type=\\\"punctuated\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">n</mi><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\">,</mo><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">p</mi></mrow><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">)</mo></mrow></mrow>$$ G\\\\left(n,p\\\\right) $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. This is known when <span data-altimg=\\\"/cms/asset/50ecd920-e267-424b-a655-dfdb65e8dc46/rsa21215-math-0005.png\\\"></span><mjx-container ctxtmenu_counter=\\\"12\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/rsa21215-math-0005.png\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"0,5\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-role=\\\"inequality\\\" data-semantic-speech=\\\"alpha greater than 1 divided by 2\\\" data-semantic-type=\\\"relseq\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,&gt;\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"inequality\\\" data-semantic-type=\\\"relation\\\" rspace=\\\"5\\\" space=\\\"5\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"2,4\\\" data-semantic-content=\\\"3\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"infixop\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,/\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"operator\\\" rspace=\\\"1\\\" space=\\\"1\\\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:rsa:media:rsa21215:rsa21215-math-0005\\\" display=\\\"inline\\\" location=\\\"graphic/rsa21215-math-0005.png\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"0,5\\\" data-semantic-content=\\\"1\\\" data-semantic-role=\\\"inequality\\\" data-semantic-speech=\\\"alpha greater than 1 divided by 2\\\" data-semantic-type=\\\"relseq\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\">α</mi><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"relseq,&gt;\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"inequality\\\" data-semantic-type=\\\"relation\\\">&gt;</mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"2,4\\\" data-semantic-content=\\\"3\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"infixop\\\"><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">1</mn><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"infixop,/\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"operator\\\" stretchy=\\\"false\\\">/</mo><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">2</mn></mrow></mrow>$$ \\\\alpha &gt;1/2 $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and we determine the exact perturbed threshold probability in all the remaining cases, that is, for each <span data-altimg=\\\"/cms/asset/66a291c0-29b5-4d39-b82b-0cf5158b26d6/rsa21215-math-0006.png\\\"></span><mjx-container ctxtmenu_counter=\\\"13\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/rsa21215-math-0006.png\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"0,5\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-role=\\\"inequality\\\" data-semantic-speech=\\\"alpha less than or equals 1 divided by 2\\\" data-semantic-type=\\\"relseq\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,≤\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"inequality\\\" data-semantic-type=\\\"relation\\\" rspace=\\\"5\\\" space=\\\"5\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"2,4\\\" data-semantic-content=\\\"3\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"infixop\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,/\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"operator\\\" rspace=\\\"1\\\" space=\\\"1\\\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:rsa:media:rsa21215:rsa21215-math-0006\\\" display=\\\"inline\\\" location=\\\"graphic/rsa21215-math-0006.png\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"0,5\\\" data-semantic-content=\\\"1\\\" data-semantic-role=\\\"inequality\\\" data-semantic-speech=\\\"alpha less than or equals 1 divided by 2\\\" data-semantic-type=\\\"relseq\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\">α</mi><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"relseq,≤\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"inequality\\\" data-semantic-type=\\\"relation\\\">≤</mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"2,4\\\" data-semantic-content=\\\"3\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"infixop\\\"><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">1</mn><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"infixop,/\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"operator\\\" stretchy=\\\"false\\\">/</mo><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">2</mn></mrow></mrow>$$ \\\\alpha \\\\le 1/2 $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. We demonstrate that, as <span data-altimg=\\\"/cms/asset/619ffd69-bc20-4588-89c1-2e6bd4d50c86/rsa21215-math-0007.png\\\"></span><mjx-container ctxtmenu_counter=\\\"14\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/rsa21215-math-0007.png\\\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"greekletter\\\" data-semantic-speech=\\\"alpha\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:rsa:media:rsa21215:rsa21215-math-0007\\\" display=\\\"inline\\\" location=\\\"graphic/rsa21215-math-0007.png\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-speech=\\\"alpha\\\" data-semantic-type=\\\"identifier\\\">α</mi></mrow>$$ \\\\alpha $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> ranges over the interval <span data-altimg=\\\"/cms/asset/9b00cc24-7e17-407f-aef0-bced955f9ee1/rsa21215-math-0008.png\\\"></span><mjx-container ctxtmenu_counter=\\\"15\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/rsa21215-math-0008.png\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"5\\\" data-semantic-content=\\\"0,4\\\" data-semantic- data-semantic-role=\\\"leftright\\\" data-semantic-speech=\\\"left parenthesis 0 comma 1 right parenthesis\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"1,2,3\\\" data-semantic-content=\\\"2\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"sequence\\\" data-semantic-type=\\\"punctuated\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\" rspace=\\\"3\\\" style=\\\"margin-left: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:rsa:media:rsa21215:rsa21215-math-0008\\\" display=\\\"inline\\\" location=\\\"graphic/rsa21215-math-0008.png\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"5\\\" data-semantic-content=\\\"0,4\\\" data-semantic-role=\\\"leftright\\\" data-semantic-speech=\\\"left parenthesis 0 comma 1 right parenthesis\\\" data-semantic-type=\\\"fenced\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">(</mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"1,2,3\\\" data-semantic-content=\\\"2\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"sequence\\\" data-semantic-type=\\\"punctuated\\\"><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">0</mn><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\">,</mo><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">1</mn></mrow><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">)</mo></mrow>$$ \\\\left(0,1\\\\right) $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, the threshold performs a countably infinite number of ‘jumps’. Our result has implications on the perturbed threshold for two-universality, where we also fully address all open cases.\",\"PeriodicalId\":20948,\"journal\":{\"name\":\"Random Structures and Algorithms\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Structures and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/rsa.21215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了随机扰动图模型中汉密尔顿循环平方的出现,对于给定的α∈(0,1)$$ \alpha \left(0,1\right)$$,最小度为αn$$ \alpha n$$的任意n$$n$顶点图与二叉随机图G(n,p)$$G\left(n,p\right)$$的结合。当α>1/2$$ \alpha >1/2 $$时,这一点是已知的,我们确定了所有其余情况下的精确扰动阈值概率,也就是说,对于每个α≤1/2$$ \alpha \le 1/2 $$。我们证明,当 α$$ \alpha $$ 在区间(0,1)$$ \left(0,1\right) $$ 上时,阈值会执行无数次 "跳跃"。我们的结果对两普遍性的扰动阈值有影响,我们也完全解决了所有开放的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The square of a Hamilton cycle in randomly perturbed graphs
We investigate the appearance of the square of a Hamilton cycle in the model of randomly perturbed graphs, which is, for a given α(0,1)$$ \alpha \in \left(0,1\right) $$, the union of any n$$ n $$-vertex graph with minimum degree αn$$ \alpha n $$ and the binomial random graph G(n,p)$$ G\left(n,p\right) $$. This is known when α>1/2$$ \alpha >1/2 $$ and we determine the exact perturbed threshold probability in all the remaining cases, that is, for each α1/2$$ \alpha \le 1/2 $$. We demonstrate that, as α$$ \alpha $$ ranges over the interval (0,1)$$ \left(0,1\right) $$, the threshold performs a countably infinite number of ‘jumps’. Our result has implications on the perturbed threshold for two-universality, where we also fully address all open cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信