细胞变体对称幂的紧凑支撑 $\mathbb{A}^1$-Euler 特性

Jesse Pajwani, Herman Rohrbach, Anna M. Viergever
{"title":"细胞变体对称幂的紧凑支撑 $\\mathbb{A}^1$-Euler 特性","authors":"Jesse Pajwani, Herman Rohrbach, Anna M. Viergever","doi":"arxiv-2404.08486","DOIUrl":null,"url":null,"abstract":"The compactly supported $\\mathbb{A}^1$-Euler characteristic, introduced by\nHoyois and later refined by Levine and others, is an anologue in motivic\nhomotopy theory of the classical Euler characteristic of complex topological\nmanifolds. It is an invariant on the Grothendieck ring of varieties\n$\\mathrm{K}_0(\\mathrm{Var}_k)$ taking values in the Grothendieck-Witt ring\n$\\mathrm{GW}(k)$ of the base field $k$. The former ring has a natural power\nstructure induced by symmetric powers of varieties. In a recent preprint,\nPajwani and P\\'al construct a power structure on $\\mathrm{GW}(k)$ and show that\nthe compactly supported $\\mathbb{A}^1$-Euler characteristic respects these two\npower structures for $0$-dimensional varieties, or equivalently \\'etale\n$k$-algebras. In this paper, we define the class $\\mathrm{Sym}_k$ of\nsymmetrisable varieties to be those varieties for which the compactly supported\n$\\mathbb{A}^1$-Euler characteristic respects the power structures and study the\nalgebraic properties of $\\mathrm{K}_0(\\mathrm{Sym}_k)$. We show that it\nincludes all cellular varieties, and even linear varieties as introduced by\nTotaro. Moreover, we show that it includes non-linear varieties such as\nelliptic curves. As an application of our main result, we compute the compactly\nsupported $\\mathbb{A}^1$-Euler characteristics of symmetric powers of\nGrassmannians and certain del Pezzo surfaces.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compactly supported $\\\\mathbb{A}^1$-Euler characteristics of symmetric powers of cellular varieties\",\"authors\":\"Jesse Pajwani, Herman Rohrbach, Anna M. Viergever\",\"doi\":\"arxiv-2404.08486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The compactly supported $\\\\mathbb{A}^1$-Euler characteristic, introduced by\\nHoyois and later refined by Levine and others, is an anologue in motivic\\nhomotopy theory of the classical Euler characteristic of complex topological\\nmanifolds. It is an invariant on the Grothendieck ring of varieties\\n$\\\\mathrm{K}_0(\\\\mathrm{Var}_k)$ taking values in the Grothendieck-Witt ring\\n$\\\\mathrm{GW}(k)$ of the base field $k$. The former ring has a natural power\\nstructure induced by symmetric powers of varieties. In a recent preprint,\\nPajwani and P\\\\'al construct a power structure on $\\\\mathrm{GW}(k)$ and show that\\nthe compactly supported $\\\\mathbb{A}^1$-Euler characteristic respects these two\\npower structures for $0$-dimensional varieties, or equivalently \\\\'etale\\n$k$-algebras. In this paper, we define the class $\\\\mathrm{Sym}_k$ of\\nsymmetrisable varieties to be those varieties for which the compactly supported\\n$\\\\mathbb{A}^1$-Euler characteristic respects the power structures and study the\\nalgebraic properties of $\\\\mathrm{K}_0(\\\\mathrm{Sym}_k)$. We show that it\\nincludes all cellular varieties, and even linear varieties as introduced by\\nTotaro. Moreover, we show that it includes non-linear varieties such as\\nelliptic curves. As an application of our main result, we compute the compactly\\nsupported $\\\\mathbb{A}^1$-Euler characteristics of symmetric powers of\\nGrassmannians and certain del Pezzo surfaces.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.08486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.08486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

紧凑支撑的$\mathbb{A}^1$-欧拉特性由霍尤瓦提出,后来由莱文等人完善,是复拓扑manifolds经典欧拉特性在动机重漫游理论中的同源物。它是在基域$k$的格罗内迪克-维特环$mathrm{GW}(k)$取值的格罗内迪克环上的一个不变量。前一个环有一个由对称幂变种诱导的天然幂结构。Pajwani 和 P\'al 在最近的预印本中构建了 $\mathrm{GW}(k)$ 上的幂结构,并证明了紧凑支持的 $\mathbb{A}^1$ 欧勒特征尊重这些 $0$ 维品种或等价于 \'etale$k$ 算法的双幂结构。本文定义了$\mathrm{Sym}_k$可对称变元类,即紧凑支撑的$\mathbb{A}^1$-欧勒特征尊重幂结构的变元,并研究了$\mathrm{K}_0(\mathrm{Sym}_k)$的代数性质。我们证明它包括了所有的单元变项,甚至包括了户太郎引入的线性变项。此外,我们还证明了它包括非线性品种,如椭圆曲线。作为我们主要结果的一个应用,我们计算了格拉斯曼对称幂和某些德尔佩佐曲面的紧凑支撑$\mathbb{A}^1$-欧拉特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compactly supported $\mathbb{A}^1$-Euler characteristics of symmetric powers of cellular varieties
The compactly supported $\mathbb{A}^1$-Euler characteristic, introduced by Hoyois and later refined by Levine and others, is an anologue in motivic homotopy theory of the classical Euler characteristic of complex topological manifolds. It is an invariant on the Grothendieck ring of varieties $\mathrm{K}_0(\mathrm{Var}_k)$ taking values in the Grothendieck-Witt ring $\mathrm{GW}(k)$ of the base field $k$. The former ring has a natural power structure induced by symmetric powers of varieties. In a recent preprint, Pajwani and P\'al construct a power structure on $\mathrm{GW}(k)$ and show that the compactly supported $\mathbb{A}^1$-Euler characteristic respects these two power structures for $0$-dimensional varieties, or equivalently \'etale $k$-algebras. In this paper, we define the class $\mathrm{Sym}_k$ of symmetrisable varieties to be those varieties for which the compactly supported $\mathbb{A}^1$-Euler characteristic respects the power structures and study the algebraic properties of $\mathrm{K}_0(\mathrm{Sym}_k)$. We show that it includes all cellular varieties, and even linear varieties as introduced by Totaro. Moreover, we show that it includes non-linear varieties such as elliptic curves. As an application of our main result, we compute the compactly supported $\mathbb{A}^1$-Euler characteristics of symmetric powers of Grassmannians and certain del Pezzo surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信