{"title":"多扇面等变代数 K 理论","authors":"Donald Yau","doi":"arxiv-2404.02794","DOIUrl":null,"url":null,"abstract":"A central question in equivariant algebraic K-theory asks whether there\nexists an equivariant K-theory machine from genuine symmetric monoidal\nG-categories to orthogonal G-spectra that preserves equivariant algebraic\nstructures. We answer this question positively by constructing an enriched\nmultifunctor K from the G-categorically enriched multicategory of\nO-pseudoalgebras to the symmetric monoidal category of orthogonal G-spectra,\nfor a compact Lie group G and a 1-connected pseudo-commutative G-categorical\noperad O. As the main application of its enriched multifunctoriality, K\npreserves all equivariant algebraic structures parametrized by multicategories\nenriched in either G-spaces or G-categories. For example, for a finite group G\nand the G-Barratt-Eccles operad, K transports equivariant E-infinity algebras,\nin the sense of Guillou-May or Blumberg-Hill, of genuine symmetric monoidal\nG-categories to equivariant E-infinity algebras of orthogonal G-spectra.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctorial Equivariant Algebraic K-Theory\",\"authors\":\"Donald Yau\",\"doi\":\"arxiv-2404.02794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A central question in equivariant algebraic K-theory asks whether there\\nexists an equivariant K-theory machine from genuine symmetric monoidal\\nG-categories to orthogonal G-spectra that preserves equivariant algebraic\\nstructures. We answer this question positively by constructing an enriched\\nmultifunctor K from the G-categorically enriched multicategory of\\nO-pseudoalgebras to the symmetric monoidal category of orthogonal G-spectra,\\nfor a compact Lie group G and a 1-connected pseudo-commutative G-categorical\\noperad O. As the main application of its enriched multifunctoriality, K\\npreserves all equivariant algebraic structures parametrized by multicategories\\nenriched in either G-spaces or G-categories. For example, for a finite group G\\nand the G-Barratt-Eccles operad, K transports equivariant E-infinity algebras,\\nin the sense of Guillou-May or Blumberg-Hill, of genuine symmetric monoidal\\nG-categories to equivariant E-infinity algebras of orthogonal G-spectra.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.02794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.02794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
等变代数 K 理论的一个核心问题是,从真正的对称一元 G 范畴到正交 G 范畴,是否存在一个保留等变代数结构的等变 K 理论机。我们正面回答了这个问题,即针对一个紧凑的李群G和一个1连接的伪交换G范畴O,构造了一个从G范畴丰富的O伪基多范畴到正交G谱的对称一元范畴的丰富多矢量K。例如,对于有限群Gand的G-Barratt-Eccles操作数,K将真正对称单环G-类的等变E-无穷代数(Guillou-May或Blumberg-Hill意义上的等变E-无穷代数)转移到正交G-谱的等变E-无穷代数。
A central question in equivariant algebraic K-theory asks whether there
exists an equivariant K-theory machine from genuine symmetric monoidal
G-categories to orthogonal G-spectra that preserves equivariant algebraic
structures. We answer this question positively by constructing an enriched
multifunctor K from the G-categorically enriched multicategory of
O-pseudoalgebras to the symmetric monoidal category of orthogonal G-spectra,
for a compact Lie group G and a 1-connected pseudo-commutative G-categorical
operad O. As the main application of its enriched multifunctoriality, K
preserves all equivariant algebraic structures parametrized by multicategories
enriched in either G-spaces or G-categories. For example, for a finite group G
and the G-Barratt-Eccles operad, K transports equivariant E-infinity algebras,
in the sense of Guillou-May or Blumberg-Hill, of genuine symmetric monoidal
G-categories to equivariant E-infinity algebras of orthogonal G-spectra.