{"title":"李型异常群上的块传递 3-(v, k, 1) 设计","authors":"","doi":"10.1007/s10801-024-01315-0","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Let <span> <span>\\({\\mathcal {D}}\\)</span> </span> be a non-trivial <em>G</em>-block-transitive 3-(<em>v</em>, <em>k</em>, 1) design, where <span> <span>\\(T\\le G \\le \\textrm{Aut}(T)\\)</span> </span> for some finite non-abelian simple group <em>T</em>. It is proved that if <em>T</em> is a simple exceptional group of Lie type, then <em>T</em> is either the Suzuki group <span> <span>\\({}^2B_2(q)\\)</span> </span> or <span> <span>\\(G_2(q)\\)</span> </span>. Furthermore, if <span> <span>\\(T={}^2B_2(q)\\)</span> </span> then the design <span> <span>\\({\\mathcal {D}}\\)</span> </span> has parameters <span> <span>\\(v=q^2+1\\)</span> </span> and <span> <span>\\(k=q+1\\)</span> </span>, and so <span> <span>\\({\\mathcal {D}}\\)</span> </span> is an inverse plane of order <em>q</em>, and if <span> <span>\\(T=G_2(q)\\)</span> </span> then the point stabilizer in <em>T</em> is either <span> <span>\\(\\textrm{SL}_3(q).2\\)</span> </span> or <span> <span>\\(\\textrm{SU}_3(q).2\\)</span> </span>, and the parameter <em>k</em> satisfies very restricted conditions.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Block-transitive 3-(v, k, 1) designs on exceptional groups of Lie type\",\"authors\":\"\",\"doi\":\"10.1007/s10801-024-01315-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Let <span> <span>\\\\({\\\\mathcal {D}}\\\\)</span> </span> be a non-trivial <em>G</em>-block-transitive 3-(<em>v</em>, <em>k</em>, 1) design, where <span> <span>\\\\(T\\\\le G \\\\le \\\\textrm{Aut}(T)\\\\)</span> </span> for some finite non-abelian simple group <em>T</em>. It is proved that if <em>T</em> is a simple exceptional group of Lie type, then <em>T</em> is either the Suzuki group <span> <span>\\\\({}^2B_2(q)\\\\)</span> </span> or <span> <span>\\\\(G_2(q)\\\\)</span> </span>. Furthermore, if <span> <span>\\\\(T={}^2B_2(q)\\\\)</span> </span> then the design <span> <span>\\\\({\\\\mathcal {D}}\\\\)</span> </span> has parameters <span> <span>\\\\(v=q^2+1\\\\)</span> </span> and <span> <span>\\\\(k=q+1\\\\)</span> </span>, and so <span> <span>\\\\({\\\\mathcal {D}}\\\\)</span> </span> is an inverse plane of order <em>q</em>, and if <span> <span>\\\\(T=G_2(q)\\\\)</span> </span> then the point stabilizer in <em>T</em> is either <span> <span>\\\\(\\\\textrm{SL}_3(q).2\\\\)</span> </span> or <span> <span>\\\\(\\\\textrm{SU}_3(q).2\\\\)</span> </span>, and the parameter <em>k</em> satisfies very restricted conditions.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10801-024-01315-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01315-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
摘要 让 \({mathcal {D}}\) 是一个非难的 G 块传递的 3-(v,k,1)设计,其中 \(T\le G \le \textrm{Aut}(T)\) 对于某个有限的非阿贝尔简单群 T。此外,如果 \(T={}^2B_2(q)\) 那么设计 \({\mathcal {D}}\) 有参数 \(v=q^2+1\) 和 \(k=q+1\) ,所以 \({\mathcal {D}}\) 是一个 q 阶的反平面,如果 \(T=G_2(q)\) 那么 T 中的点稳定器要么是 \(\textrm{SL}_3(q).2) 或者 (textrm{SU}_3(q).参数 k 满足非常有限的条件。
Block-transitive 3-(v, k, 1) designs on exceptional groups of Lie type
Abstract
Let \({\mathcal {D}}\) be a non-trivial G-block-transitive 3-(v, k, 1) design, where \(T\le G \le \textrm{Aut}(T)\) for some finite non-abelian simple group T. It is proved that if T is a simple exceptional group of Lie type, then T is either the Suzuki group \({}^2B_2(q)\) or \(G_2(q)\). Furthermore, if \(T={}^2B_2(q)\) then the design \({\mathcal {D}}\) has parameters \(v=q^2+1\) and \(k=q+1\), and so \({\mathcal {D}}\) is an inverse plane of order q, and if \(T=G_2(q)\) then the point stabilizer in T is either \(\textrm{SL}_3(q).2\) or \(\textrm{SU}_3(q).2\), and the parameter k satisfies very restricted conditions.