积分列环中的终极周期链

Pub Date : 2024-04-09 DOI:10.1007/s10801-024-01318-x
Riccardo Aragona, Roberto Civino, Norberto Gavioli
{"title":"积分列环中的终极周期链","authors":"Riccardo Aragona, Roberto Civino, Norberto Gavioli","doi":"10.1007/s10801-024-01318-x","DOIUrl":null,"url":null,"abstract":"<p>Given an integer <i>n</i>, we introduce the integral Lie ring of partitions with bounded maximal part, whose elements are in one-to-one correspondence to integer partitions with parts in <span>\\(\\{1,2,\\dots , n-1\\}\\)</span>. Starting from an abelian subring, we recursively define a chain of idealizers and we prove that the sequence of ranks of consecutive terms in the chain is ultimately periodic. Moreover, we show that its growth depends of the partial sum of the partial sum of the sequence counting the number of partitions. This work generalizes our previous recent work on the same topic, devoted to the modular case where partitions were allowed to have a bounded number of repetitions of parts in a ring of coefficients of positive characteristic.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An ultimately periodic chain in the integral Lie ring of partitions\",\"authors\":\"Riccardo Aragona, Roberto Civino, Norberto Gavioli\",\"doi\":\"10.1007/s10801-024-01318-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given an integer <i>n</i>, we introduce the integral Lie ring of partitions with bounded maximal part, whose elements are in one-to-one correspondence to integer partitions with parts in <span>\\\\(\\\\{1,2,\\\\dots , n-1\\\\}\\\\)</span>. Starting from an abelian subring, we recursively define a chain of idealizers and we prove that the sequence of ranks of consecutive terms in the chain is ultimately periodic. Moreover, we show that its growth depends of the partial sum of the partial sum of the sequence counting the number of partitions. This work generalizes our previous recent work on the same topic, devoted to the modular case where partitions were allowed to have a bounded number of repetitions of parts in a ring of coefficients of positive characteristic.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10801-024-01318-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01318-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个整数 n,我们引入具有有界最大分部的分部的积分列环,其元素与具有 \(\{1,2,\dots , n-1\}\) 中分部的整数分部一一对应。从一个无性子环开始,我们递归地定义了一个理想化链,并证明了链中连续项的等级序列最终是周期性的。此外,我们还证明了它的增长取决于分部数序列的部分和。这项工作概括了我们之前关于同一主题的最新研究,该研究专门针对模块化情况,即允许分区在正特征系数环中有一定数量的部分重复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
An ultimately periodic chain in the integral Lie ring of partitions

Given an integer n, we introduce the integral Lie ring of partitions with bounded maximal part, whose elements are in one-to-one correspondence to integer partitions with parts in \(\{1,2,\dots , n-1\}\). Starting from an abelian subring, we recursively define a chain of idealizers and we prove that the sequence of ranks of consecutive terms in the chain is ultimately periodic. Moreover, we show that its growth depends of the partial sum of the partial sum of the sequence counting the number of partitions. This work generalizes our previous recent work on the same topic, devoted to the modular case where partitions were allowed to have a bounded number of repetitions of parts in a ring of coefficients of positive characteristic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信