基于全球导航卫星系统在线监测的地下采矿引起的山区残余沉降时间序列模型

IF 6.9 1区 工程技术 Q2 ENERGY & FUELS
Xugang Lian, Lifan Shi, Weiyu Kong, Yu Han, Haodi Fan
{"title":"基于全球导航卫星系统在线监测的地下采矿引起的山区残余沉降时间序列模型","authors":"Xugang Lian, Lifan Shi, Weiyu Kong, Yu Han, Haodi Fan","doi":"10.1007/s40789-024-00685-x","DOIUrl":null,"url":null,"abstract":"<p>The residual subsidence caused by underground mining in mountain area has a long subsidence duration time and great potential harm, which seriously threatens the safety of people's production and life in the mining area. Therefore, it is necessary to use appropriate monitoring methods and mathematical models to effectively monitor and predict the residual subsidence caused by underground mining. Compared with traditional level survey and InSAR (Interferometric Synthetic Aperture Radar) technology, GNSS (Global Navigation Satellite System) online monitoring technology has the advantages of long-term monitoring, high precision and more flexible monitoring methods. The empirical equation method of residual subsidence in mining subsidence is effectively combined with the rock creep equation, which can not only describe the residual subsidence process from the mechanism, but also predict the residual subsidence. Therefore, based on GNSS online monitoring technology, combined with the mining subsidence model of mountain area and adding the correlation coefficient of the compaction degree of caving broken rock and the Kelvin model of rock mechanics, this paper constructs the residual subsidence time series model of arbitrary point on the ground in mountain area. Through the example, the predicted results of the model in the inversion parameter phase and the dynamic prediction phase are compared with the measured data sequence. The results show that the model can carry out effective numerical calculation according to the GNSS monitoring data of any point on the ground, and the model prediction effect is good, which provides a new method for the prediction of residual subsidence in mountain mining.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Residual subsidence time series model in mountain area caused by underground mining based on GNSS online monitoring\",\"authors\":\"Xugang Lian, Lifan Shi, Weiyu Kong, Yu Han, Haodi Fan\",\"doi\":\"10.1007/s40789-024-00685-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The residual subsidence caused by underground mining in mountain area has a long subsidence duration time and great potential harm, which seriously threatens the safety of people's production and life in the mining area. Therefore, it is necessary to use appropriate monitoring methods and mathematical models to effectively monitor and predict the residual subsidence caused by underground mining. Compared with traditional level survey and InSAR (Interferometric Synthetic Aperture Radar) technology, GNSS (Global Navigation Satellite System) online monitoring technology has the advantages of long-term monitoring, high precision and more flexible monitoring methods. The empirical equation method of residual subsidence in mining subsidence is effectively combined with the rock creep equation, which can not only describe the residual subsidence process from the mechanism, but also predict the residual subsidence. Therefore, based on GNSS online monitoring technology, combined with the mining subsidence model of mountain area and adding the correlation coefficient of the compaction degree of caving broken rock and the Kelvin model of rock mechanics, this paper constructs the residual subsidence time series model of arbitrary point on the ground in mountain area. Through the example, the predicted results of the model in the inversion parameter phase and the dynamic prediction phase are compared with the measured data sequence. The results show that the model can carry out effective numerical calculation according to the GNSS monitoring data of any point on the ground, and the model prediction effect is good, which provides a new method for the prediction of residual subsidence in mountain mining.</p>\",\"PeriodicalId\":53469,\"journal\":{\"name\":\"International Journal of Coal Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Coal Science & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40789-024-00685-x\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coal Science & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40789-024-00685-x","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

山区地下开采引起的残留沉陷,沉陷持续时间长,潜在危害大,严重威胁着矿区人民的生产生活安全。因此,有必要采用适当的监测方法和数学模型对地下采矿引起的残余沉陷进行有效的监测和预测。与传统的水准测量和 InSAR(干涉合成孔径雷达)技术相比,GNSS(全球导航卫星系统)在线监测技术具有监测时间长、精度高、监测方法更灵活等优点。采矿沉陷中的残余沉陷经验方程法与岩石蠕变方程有效结合,不仅能从机理上描述残余沉陷过程,还能预测残余沉陷量。因此,本文基于 GNSS 在线监测技术,结合山区采矿沉陷模型,加入崩塌破碎岩石压实度的相关系数和岩石力学的开尔文模型,构建了山区地面任意点的残余沉陷时间序列模型。通过实例,将模型在反演参数阶段和动态预测阶段的预测结果与实测数据序列进行了对比。结果表明,该模型能根据地面任意点的 GNSS 监测数据进行有效的数值计算,模型预测效果良好,为山区采矿残余沉陷预测提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Residual subsidence time series model in mountain area caused by underground mining based on GNSS online monitoring

Residual subsidence time series model in mountain area caused by underground mining based on GNSS online monitoring

The residual subsidence caused by underground mining in mountain area has a long subsidence duration time and great potential harm, which seriously threatens the safety of people's production and life in the mining area. Therefore, it is necessary to use appropriate monitoring methods and mathematical models to effectively monitor and predict the residual subsidence caused by underground mining. Compared with traditional level survey and InSAR (Interferometric Synthetic Aperture Radar) technology, GNSS (Global Navigation Satellite System) online monitoring technology has the advantages of long-term monitoring, high precision and more flexible monitoring methods. The empirical equation method of residual subsidence in mining subsidence is effectively combined with the rock creep equation, which can not only describe the residual subsidence process from the mechanism, but also predict the residual subsidence. Therefore, based on GNSS online monitoring technology, combined with the mining subsidence model of mountain area and adding the correlation coefficient of the compaction degree of caving broken rock and the Kelvin model of rock mechanics, this paper constructs the residual subsidence time series model of arbitrary point on the ground in mountain area. Through the example, the predicted results of the model in the inversion parameter phase and the dynamic prediction phase are compared with the measured data sequence. The results show that the model can carry out effective numerical calculation according to the GNSS monitoring data of any point on the ground, and the model prediction effect is good, which provides a new method for the prediction of residual subsidence in mountain mining.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.40
自引率
8.40%
发文量
678
审稿时长
12 weeks
期刊介绍: The International Journal of Coal Science & Technology is a peer-reviewed open access journal that focuses on key topics of coal scientific research and mining development. It serves as a forum for scientists to present research findings and discuss challenging issues in the field. The journal covers a range of topics including coal geology, geochemistry, geophysics, mineralogy, and petrology. It also covers coal mining theory, technology, and engineering, as well as coal processing, utilization, and conversion. Additionally, the journal explores coal mining environment and reclamation, along with related aspects. The International Journal of Coal Science & Technology is published with China Coal Society, who also cover the publication costs. This means that authors do not need to pay an article-processing charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信