掺杂镍、镁和铁的氧化锌的光学特性和抗菌活性

IF 1.2 4区 材料科学 Q4 CHEMISTRY, PHYSICAL
TAREK-DIAB OUNIS, KHAOULA RAHMOUNI, LAMIA AOUAR, MOURAD ZAABAT
{"title":"掺杂镍、镁和铁的氧化锌的光学特性和抗菌活性","authors":"TAREK-DIAB OUNIS, KHAOULA RAHMOUNI, LAMIA AOUAR, MOURAD ZAABAT","doi":"10.1142/s0218625x2450104x","DOIUrl":null,"url":null,"abstract":"<p>In recent years, research on pure ZnO, Ni-doped ZnO, Mg-doped ZnO, and Fe-doped ZnO nanostructures has been gradually progressing to create more effective materials that may be applied in a variety of applications. In this investigation, hydrothermal synthesis was used to create both pure ZnO nanoparticles and ZnO that had been doped with Ni, Mg, and Fe at a concentration of 7%. Before testing the nanostructures’ ability to inhibit harmful bacteria (<i>Bacillus subtilis</i>, <i>Staphylococcus aureus</i>, <i>Escherichia coli</i>, <i>Pseudomonas aeruginosa</i>, and <i>Enterobacter</i> sp.), they were shown to have antibacterial activity. With the use of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and ultraviolet–visible (UV–Vis), their physicochemical characteristics were initially determined. When Ni, Mg, and Fe are inserted into ZnO, XRD measurements show that the particle size decreases from 28.94<span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>nm to 19.96<span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>nm. The optical bandgap decreases from 3.17<span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>eV to 3.08<span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>eV with the least value for Fe/ZnO NPs, according to UV–Vis spectral data, which also shows that the absorption edge changes to higher wavelengths (redshift). This research has produced nanoparticle samples of Ni/ZnO, Mg/ZnO, and Fe/ZnO that, when compared to the pure ZnO sample, show intriguing antibacterial activity.</p>","PeriodicalId":22011,"journal":{"name":"Surface Review and Letters","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OPTICAL PROPERTIES AND ANTIBACTERIAL ACTIVITY OF Ni, Mg, AND Fe-DOPED ZnO\",\"authors\":\"TAREK-DIAB OUNIS, KHAOULA RAHMOUNI, LAMIA AOUAR, MOURAD ZAABAT\",\"doi\":\"10.1142/s0218625x2450104x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, research on pure ZnO, Ni-doped ZnO, Mg-doped ZnO, and Fe-doped ZnO nanostructures has been gradually progressing to create more effective materials that may be applied in a variety of applications. In this investigation, hydrothermal synthesis was used to create both pure ZnO nanoparticles and ZnO that had been doped with Ni, Mg, and Fe at a concentration of 7%. Before testing the nanostructures’ ability to inhibit harmful bacteria (<i>Bacillus subtilis</i>, <i>Staphylococcus aureus</i>, <i>Escherichia coli</i>, <i>Pseudomonas aeruginosa</i>, and <i>Enterobacter</i> sp.), they were shown to have antibacterial activity. With the use of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and ultraviolet–visible (UV–Vis), their physicochemical characteristics were initially determined. When Ni, Mg, and Fe are inserted into ZnO, XRD measurements show that the particle size decreases from 28.94<span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>nm to 19.96<span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>nm. The optical bandgap decreases from 3.17<span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>eV to 3.08<span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>eV with the least value for Fe/ZnO NPs, according to UV–Vis spectral data, which also shows that the absorption edge changes to higher wavelengths (redshift). This research has produced nanoparticle samples of Ni/ZnO, Mg/ZnO, and Fe/ZnO that, when compared to the pure ZnO sample, show intriguing antibacterial activity.</p>\",\"PeriodicalId\":22011,\"journal\":{\"name\":\"Surface Review and Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Review and Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218625x2450104x\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Review and Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1142/s0218625x2450104x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

近年来,有关纯氧化锌、掺杂镍的氧化锌、掺杂镁的氧化锌和掺杂铁的氧化锌纳米结构的研究逐渐取得进展,以创造出更有效的材料,应用于各种领域。在这项研究中,采用水热合成法制备了纯氧化锌纳米颗粒和掺杂镍、镁和铁(浓度为 7%)的氧化锌。在测试纳米结构抑制有害细菌(枯草杆菌、金黄色葡萄球菌、大肠杆菌、铜绿假单胞菌和肠杆菌)的能力之前,先要证明纳米结构具有抗菌活性。利用 X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、能量色散 X 射线光谱 (EDS) 和紫外可见光 (UV-Vis) 技术,初步确定了它们的物理化学特性。在氧化锌中加入镍、镁和铁后,XRD 测量结果表明其粒径从 28.94nm 减小到 19.96nm。紫外可见光谱数据显示,Fe/ZnO NPs 的光带隙从 3.17eV 减小到 3.08eV,其中 Fe/ZnO NPs 的光带隙值最小,这也表明其吸收边缘向更高波长变化(红移)。这项研究制备出了 Ni/ZnO、Mg/ZnO 和 Fe/ZnO 纳米粒子样品,与纯 ZnO 样品相比,这些样品显示出了耐人寻味的抗菌活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OPTICAL PROPERTIES AND ANTIBACTERIAL ACTIVITY OF Ni, Mg, AND Fe-DOPED ZnO

In recent years, research on pure ZnO, Ni-doped ZnO, Mg-doped ZnO, and Fe-doped ZnO nanostructures has been gradually progressing to create more effective materials that may be applied in a variety of applications. In this investigation, hydrothermal synthesis was used to create both pure ZnO nanoparticles and ZnO that had been doped with Ni, Mg, and Fe at a concentration of 7%. Before testing the nanostructures’ ability to inhibit harmful bacteria (Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Enterobacter sp.), they were shown to have antibacterial activity. With the use of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and ultraviolet–visible (UV–Vis), their physicochemical characteristics were initially determined. When Ni, Mg, and Fe are inserted into ZnO, XRD measurements show that the particle size decreases from 28.94nm to 19.96nm. The optical bandgap decreases from 3.17eV to 3.08eV with the least value for Fe/ZnO NPs, according to UV–Vis spectral data, which also shows that the absorption edge changes to higher wavelengths (redshift). This research has produced nanoparticle samples of Ni/ZnO, Mg/ZnO, and Fe/ZnO that, when compared to the pure ZnO sample, show intriguing antibacterial activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface Review and Letters
Surface Review and Letters 工程技术-物理:凝聚态物理
CiteScore
2.20
自引率
9.10%
发文量
139
审稿时长
4.2 months
期刊介绍: This international journal is devoted to the elucidation of properties and processes that occur at the boundaries of materials. The scope of the journal covers a broad range of topics in experimental and theoretical studies of surfaces and interfaces. Both the physical and chemical properties are covered. The journal also places emphasis on emerging areas of cross-disciplinary research where new phenomena occur due to the presence of a surface or an interface. Representative areas include surface and interface structures; their electronic, magnetic and optical properties; dynamics and energetics; chemical reactions at surfaces; phase transitions, reconstruction, roughening and melting; defects, nucleation and growth; and new surface and interface characterization techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信