{"title":"通过构建信号模型测量超声波脉冲到达时间以确定其传播速度","authors":"E. G. Bazulin, A. A. Krylovich","doi":"10.1134/S1061830923601137","DOIUrl":null,"url":null,"abstract":"<p>The paper considers several methods of measuring the arrival time of ultrasonic pulses. A method for determining the pulse arrival time based on the construction of a signal model with an adaptive dictionary and the search for the minimum of the objective function by the quantum swarm intelligence method is proposed. The results of numerical and modeling experiments on measuring the propagation velocity of ultrasonic waves in various samples are presented. It is shown that the proposed method of determining the time of pulse arrival is more resistant to distortion of the echo waveform arising due to frequency-dependent attenuation in the material of the test object.</p>","PeriodicalId":764,"journal":{"name":"Russian Journal of Nondestructive Testing","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement of Ultrasonic Pulse Arrival Time by Constructing a Signal Model to Determine Its Propagation Velocity\",\"authors\":\"E. G. Bazulin, A. A. Krylovich\",\"doi\":\"10.1134/S1061830923601137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper considers several methods of measuring the arrival time of ultrasonic pulses. A method for determining the pulse arrival time based on the construction of a signal model with an adaptive dictionary and the search for the minimum of the objective function by the quantum swarm intelligence method is proposed. The results of numerical and modeling experiments on measuring the propagation velocity of ultrasonic waves in various samples are presented. It is shown that the proposed method of determining the time of pulse arrival is more resistant to distortion of the echo waveform arising due to frequency-dependent attenuation in the material of the test object.</p>\",\"PeriodicalId\":764,\"journal\":{\"name\":\"Russian Journal of Nondestructive Testing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Nondestructive Testing\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061830923601137\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Nondestructive Testing","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1061830923601137","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Measurement of Ultrasonic Pulse Arrival Time by Constructing a Signal Model to Determine Its Propagation Velocity
The paper considers several methods of measuring the arrival time of ultrasonic pulses. A method for determining the pulse arrival time based on the construction of a signal model with an adaptive dictionary and the search for the minimum of the objective function by the quantum swarm intelligence method is proposed. The results of numerical and modeling experiments on measuring the propagation velocity of ultrasonic waves in various samples are presented. It is shown that the proposed method of determining the time of pulse arrival is more resistant to distortion of the echo waveform arising due to frequency-dependent attenuation in the material of the test object.
期刊介绍:
Russian Journal of Nondestructive Testing, a translation of Defectoskopiya, is a publication of the Russian Academy of Sciences. This publication offers current Russian research on the theory and technology of nondestructive testing of materials and components. It describes laboratory and industrial investigations of devices and instrumentation and provides reviews of new equipment developed for series manufacture. Articles cover all physical methods of nondestructive testing, including magnetic and electrical; ultrasonic; X-ray and Y-ray; capillary; liquid (color luminescence), and radio (for materials of low conductivity).