具有氢键的快离子导体纳米纤维和芳纶纳米纤维协同增强复合固体电解质

IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hengying Xiang, Lu Gao, Dongjie Shi, Long Jiao, Bowen Cheng, Nanping Deng, Geng Li, Weimin Kang
{"title":"具有氢键的快离子导体纳米纤维和芳纶纳米纤维协同增强复合固体电解质","authors":"Hengying Xiang,&nbsp;Lu Gao,&nbsp;Dongjie Shi,&nbsp;Long Jiao,&nbsp;Bowen Cheng,&nbsp;Nanping Deng,&nbsp;Geng Li,&nbsp;Weimin Kang","doi":"10.1007/s42765-024-00402-y","DOIUrl":null,"url":null,"abstract":"<div><p>The low ionic conductivities, poor high-voltage stabilities, and lithium dendrite formation of polymer solid electrolytes preclude their use in all-solid-state lithium metal batteries (ASSLMBs). This work provides a simple and scalable technique for constructing fast ion conductor nanofibers (FICNFs) and poly-m-phenyleneisophthalamide (PMIA) nanofibers synergistically enhanced polyethylene oxide (PEO)-based composite solid electrolytes (CSEs) for ASSLMBs. The FICNFs, which were mainly composed of high loadings of ZrO<sub>2</sub> or Li<sub>6.4</sub>La<sub>3</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>12</sub> nanoparticles, had a percolated ceramic phase inside the nanofibers, while the exposed nanoparticles formed continuous organic–inorganic interfaces with the PEO matrix to enable Li<sup>+</sup> transport. The interfacial transport rate between ZrO<sub>2</sub> and PEO was calculated as 4.78 × 10<sup>–5</sup> cm<sup>2</sup> s<sup>−1</sup> with ab initio molecular dynamics (AIMD) simulations. Besides, the PMIA nanofibers provided strong skeletal support for the CSEs, ensuring excellent mechanical strength and safety for thin CSEs even at high temperatures. More importantly, the amide groups in PMIA provided abundant hydrogen bonds with TFSI<sup>−</sup>, which lowered the lowest unoccupied molecular orbital (LUMO) level of lithium salts, thus promoting the generation of lithium fluoride-rich solid electrolyte interphase. Consequently, the modified CSEs exhibited satisfactory ionic conductivities (5.38 × 10<sup>–4</sup> S cm<sup>−1</sup> at 50 °C) and notable Li dendrite suppression (&gt; 1500 h at 0.3 mAh cm<sup>−2</sup>). The assembled LiFePO<sub>4</sub>||Li full cells display ultra-long cycles (&gt; 2000 cycles) at 50 °C and 40 °C. More strikingly, the LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> (NMC811)||Li cell also can stably run for 500 cycles, and the LiFePO<sub>4</sub>||Li flexible pouch cells also cycled normally, demonstrating tremendous potential for practical application.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 3","pages":"883 - 899"},"PeriodicalIF":17.2000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Ion Conductor Nanofibers and Aramid Nanofibers with Hydrogen Bonds Synergistically Enhanced Composite Solid Electrolytes\",\"authors\":\"Hengying Xiang,&nbsp;Lu Gao,&nbsp;Dongjie Shi,&nbsp;Long Jiao,&nbsp;Bowen Cheng,&nbsp;Nanping Deng,&nbsp;Geng Li,&nbsp;Weimin Kang\",\"doi\":\"10.1007/s42765-024-00402-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The low ionic conductivities, poor high-voltage stabilities, and lithium dendrite formation of polymer solid electrolytes preclude their use in all-solid-state lithium metal batteries (ASSLMBs). This work provides a simple and scalable technique for constructing fast ion conductor nanofibers (FICNFs) and poly-m-phenyleneisophthalamide (PMIA) nanofibers synergistically enhanced polyethylene oxide (PEO)-based composite solid electrolytes (CSEs) for ASSLMBs. The FICNFs, which were mainly composed of high loadings of ZrO<sub>2</sub> or Li<sub>6.4</sub>La<sub>3</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>12</sub> nanoparticles, had a percolated ceramic phase inside the nanofibers, while the exposed nanoparticles formed continuous organic–inorganic interfaces with the PEO matrix to enable Li<sup>+</sup> transport. The interfacial transport rate between ZrO<sub>2</sub> and PEO was calculated as 4.78 × 10<sup>–5</sup> cm<sup>2</sup> s<sup>−1</sup> with ab initio molecular dynamics (AIMD) simulations. Besides, the PMIA nanofibers provided strong skeletal support for the CSEs, ensuring excellent mechanical strength and safety for thin CSEs even at high temperatures. More importantly, the amide groups in PMIA provided abundant hydrogen bonds with TFSI<sup>−</sup>, which lowered the lowest unoccupied molecular orbital (LUMO) level of lithium salts, thus promoting the generation of lithium fluoride-rich solid electrolyte interphase. Consequently, the modified CSEs exhibited satisfactory ionic conductivities (5.38 × 10<sup>–4</sup> S cm<sup>−1</sup> at 50 °C) and notable Li dendrite suppression (&gt; 1500 h at 0.3 mAh cm<sup>−2</sup>). The assembled LiFePO<sub>4</sub>||Li full cells display ultra-long cycles (&gt; 2000 cycles) at 50 °C and 40 °C. More strikingly, the LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> (NMC811)||Li cell also can stably run for 500 cycles, and the LiFePO<sub>4</sub>||Li flexible pouch cells also cycled normally, demonstrating tremendous potential for practical application.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":\"6 3\",\"pages\":\"883 - 899\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42765-024-00402-y\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-024-00402-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

聚合物固体电解质的离子电导率低、高压稳定性差以及锂枝晶的形成,使其无法用于全固态锂金属电池(ASSLMB)。这项研究提供了一种简单、可扩展的技术,用于构建快速离子导体纳米纤维(FICNFs)和聚间苯二甲酸间苯二胺(PMIA)纳米纤维,它们协同增强了用于全固态锂金属电池的聚氧化乙烯(PEO)基复合固体电解质(CSEs)。FICNFs主要由高负载的ZrO2或Li6.4La3Zr1.4Ta0.6O12纳米颗粒组成,纳米纤维内部具有渗流陶瓷相,而暴露的纳米颗粒与PEO基质形成连续的有机-无机界面,从而实现了Li+的传输。通过ab initio分子动力学(AIMD)模拟计算,ZrO2与PEO之间的界面传输速率为4.78 × 10-5 cm2 s-1。此外,PMIA 纳米纤维为 CSE 提供了强有力的骨架支撑,确保了薄 CSE 即使在高温下也具有出色的机械强度和安全性。更重要的是,PMIA 中的酰胺基团与 TFSI- 形成了丰富的氢键,降低了锂盐的最低未占分子轨道(LUMO)水平,从而促进了富含氟化锂的固态电解质间相的生成。因此,改性 CSE 表现出令人满意的离子电导率(50 °C 时为 5.38 × 10-4 S cm-1)和显著的锂枝晶抑制(0.3 mAh cm-2 时为 > 1500 h)。组装好的 LiFePO4||Li 全电池在 50 °C 和 40 °C 下显示出超长的循环周期(2000 次)。更引人注目的是,LiNi0.8Mn0.1Co0.1O2(NMC811)||锂电池也能稳定运行500次,LiFePO4||锂柔性袋电池也能正常循环,显示出巨大的实际应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Ion Conductor Nanofibers and Aramid Nanofibers with Hydrogen Bonds Synergistically Enhanced Composite Solid Electrolytes

The low ionic conductivities, poor high-voltage stabilities, and lithium dendrite formation of polymer solid electrolytes preclude their use in all-solid-state lithium metal batteries (ASSLMBs). This work provides a simple and scalable technique for constructing fast ion conductor nanofibers (FICNFs) and poly-m-phenyleneisophthalamide (PMIA) nanofibers synergistically enhanced polyethylene oxide (PEO)-based composite solid electrolytes (CSEs) for ASSLMBs. The FICNFs, which were mainly composed of high loadings of ZrO2 or Li6.4La3Zr1.4Ta0.6O12 nanoparticles, had a percolated ceramic phase inside the nanofibers, while the exposed nanoparticles formed continuous organic–inorganic interfaces with the PEO matrix to enable Li+ transport. The interfacial transport rate between ZrO2 and PEO was calculated as 4.78 × 10–5 cm2 s−1 with ab initio molecular dynamics (AIMD) simulations. Besides, the PMIA nanofibers provided strong skeletal support for the CSEs, ensuring excellent mechanical strength and safety for thin CSEs even at high temperatures. More importantly, the amide groups in PMIA provided abundant hydrogen bonds with TFSI, which lowered the lowest unoccupied molecular orbital (LUMO) level of lithium salts, thus promoting the generation of lithium fluoride-rich solid electrolyte interphase. Consequently, the modified CSEs exhibited satisfactory ionic conductivities (5.38 × 10–4 S cm−1 at 50 °C) and notable Li dendrite suppression (> 1500 h at 0.3 mAh cm−2). The assembled LiFePO4||Li full cells display ultra-long cycles (> 2000 cycles) at 50 °C and 40 °C. More strikingly, the LiNi0.8Mn0.1Co0.1O2 (NMC811)||Li cell also can stably run for 500 cycles, and the LiFePO4||Li flexible pouch cells also cycled normally, demonstrating tremendous potential for practical application.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信