从一般点定义的纤维的弗罗贝尼斯二分类证明

IF 0.4 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Sina Hazratpour, Emily Riehl
{"title":"从一般点定义的纤维的弗罗贝尼斯二分类证明","authors":"Sina Hazratpour, Emily Riehl","doi":"10.1017/s0960129524000094","DOIUrl":null,"url":null,"abstract":"Consider a locally cartesian closed category with an object <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000094_inline1.png\" /> <jats:tex-math> $\\mathbb{I}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and a class of trivial fibrations, which admit sections and are stable under pushforward and retract as arrows. Define the fibrations to be those maps whose Leibniz exponential with the generic point of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000094_inline2.png\" /> <jats:tex-math> $\\mathbb{I}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> defines a trivial fibration. Then the fibrations are also closed under pushforward.","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":"33 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 2-categorical proof of Frobenius for fibrations defined from a generic point\",\"authors\":\"Sina Hazratpour, Emily Riehl\",\"doi\":\"10.1017/s0960129524000094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a locally cartesian closed category with an object <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000094_inline1.png\\\" /> <jats:tex-math> $\\\\mathbb{I}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and a class of trivial fibrations, which admit sections and are stable under pushforward and retract as arrows. Define the fibrations to be those maps whose Leibniz exponential with the generic point of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000094_inline2.png\\\" /> <jats:tex-math> $\\\\mathbb{I}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> defines a trivial fibration. Then the fibrations are also closed under pushforward.\",\"PeriodicalId\":49855,\"journal\":{\"name\":\"Mathematical Structures in Computer Science\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Structures in Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s0960129524000094\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0960129524000094","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

考虑一个具有对象 $\mathbb{I}$ 和一类琐细纤度的局部笛卡尔封闭范畴,这些琐细纤度允许分段,并且在作为箭头的前推和后撤下是稳定的。定义纤度为那些其与 $\mathbb{I}$ 的泛点的莱布尼兹指数定义了琐碎纤度的映射。那么这些纤度在推挽作用下也是封闭的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 2-categorical proof of Frobenius for fibrations defined from a generic point
Consider a locally cartesian closed category with an object $\mathbb{I}$ and a class of trivial fibrations, which admit sections and are stable under pushforward and retract as arrows. Define the fibrations to be those maps whose Leibniz exponential with the generic point of $\mathbb{I}$ defines a trivial fibration. Then the fibrations are also closed under pushforward.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Structures in Computer Science
Mathematical Structures in Computer Science 工程技术-计算机:理论方法
CiteScore
1.50
自引率
0.00%
发文量
30
审稿时长
12 months
期刊介绍: Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信