代数 L 域的集合论方法

IF 0.4 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Juan Zou, Yuhan Zhao, Cuixia Miao, Longchun Wang
{"title":"代数 L 域的集合论方法","authors":"Juan Zou, Yuhan Zhao, Cuixia Miao, Longchun Wang","doi":"10.1017/s0960129524000069","DOIUrl":null,"url":null,"abstract":"In this paper, the notion of locally algebraic intersection structure is introduced for algebraic L-domains. Essentially, every locally algebraic intersection structure is a family of sets, which forms an algebraic L-domain ordered by inclusion. It is shown that there is a locally algebraic intersection structure which is order-isomorphic to a given algebraic L-domain. This result extends the classic Stone’s representation theorem for Boolean algebras to the case of algebraic L-domains. In addition, it can be seen that many well-known representations of algebraic L-domains, such as logical algebras, information systems, closure spaces, and formal concept analysis, can be analyzed in the framework of locally algebraic intersection structures. Then, a set-theoretic uniformity across different representations of algebraic L-domains is established.","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":"43 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A set-theoretic approach to algebraic L-domains\",\"authors\":\"Juan Zou, Yuhan Zhao, Cuixia Miao, Longchun Wang\",\"doi\":\"10.1017/s0960129524000069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the notion of locally algebraic intersection structure is introduced for algebraic L-domains. Essentially, every locally algebraic intersection structure is a family of sets, which forms an algebraic L-domain ordered by inclusion. It is shown that there is a locally algebraic intersection structure which is order-isomorphic to a given algebraic L-domain. This result extends the classic Stone’s representation theorem for Boolean algebras to the case of algebraic L-domains. In addition, it can be seen that many well-known representations of algebraic L-domains, such as logical algebras, information systems, closure spaces, and formal concept analysis, can be analyzed in the framework of locally algebraic intersection structures. Then, a set-theoretic uniformity across different representations of algebraic L-domains is established.\",\"PeriodicalId\":49855,\"journal\":{\"name\":\"Mathematical Structures in Computer Science\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Structures in Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s0960129524000069\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0960129524000069","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本文为代数 L 域引入了局部代数交集结构的概念。从本质上讲,每一个局部代数交集结构都是一个集合族,它构成了一个按包含有序排列的代数 L 域。研究表明,有一种局部代数交集结构与给定的代数 L 域是有序同构的。这一结果将布尔代数的经典斯通表示定理扩展到了代数 L 域的情况。此外,我们还可以看到,许多著名的代数 L 域表示,如逻辑代数、信息系统、闭包空间和形式概念分析,都可以在局部代数交集结构的框架内进行分析。然后,建立了代数 L 域不同表示的集合论统一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A set-theoretic approach to algebraic L-domains
In this paper, the notion of locally algebraic intersection structure is introduced for algebraic L-domains. Essentially, every locally algebraic intersection structure is a family of sets, which forms an algebraic L-domain ordered by inclusion. It is shown that there is a locally algebraic intersection structure which is order-isomorphic to a given algebraic L-domain. This result extends the classic Stone’s representation theorem for Boolean algebras to the case of algebraic L-domains. In addition, it can be seen that many well-known representations of algebraic L-domains, such as logical algebras, information systems, closure spaces, and formal concept analysis, can be analyzed in the framework of locally algebraic intersection structures. Then, a set-theoretic uniformity across different representations of algebraic L-domains is established.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Structures in Computer Science
Mathematical Structures in Computer Science 工程技术-计算机:理论方法
CiteScore
1.50
自引率
0.00%
发文量
30
审稿时长
12 months
期刊介绍: Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信