{"title":"仿射三空间上点的希尔伯特方案的边界嵌入奇点","authors":"Jen-Chieh Hsiao","doi":"10.1142/s0218196724500140","DOIUrl":null,"url":null,"abstract":"<p>The Hilbert scheme <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mstyle><mtext mathvariant=\"normal\">Hilb</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span> of <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> points on <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span> can be expressed as the critical locus of a regular function on a smooth variety <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"cal\">𝒳</mi></math></span><span></span>. Recent development in birational geometry suggests a study of singularities of the pair <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi mathvariant=\"cal\">𝒳</mi><mo>,</mo><msup><mrow><mstyle><mtext mathvariant=\"normal\">Hilb</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>3</mn></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span> using jet schemes. In this paper, we use a comparison between <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mstyle><mtext mathvariant=\"normal\">Hilb</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span> and the scheme <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn><mo>,</mo><mi>n</mi></mrow></msub></math></span><span></span> of three commuting <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo stretchy=\"false\">×</mo><mi>n</mi></math></span><span></span> matrices to estimate the log canonical threshold of <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi mathvariant=\"cal\">𝒳</mi><mo>,</mo><msup><mrow><mstyle><mtext mathvariant=\"normal\">Hilb</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>3</mn></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span>. As a consequence, we see that although both <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mo>dim</mo><mi mathvariant=\"cal\">𝒳</mi></math></span><span></span> and <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mo>dim</mo><msup><mrow><mstyle><mtext mathvariant=\"normal\">Hilb</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span> have asymptotic growth <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>O</mi><mo stretchy=\"false\">(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span>, the largest multiplicity of any points on <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mstyle><mtext mathvariant=\"normal\">Hilb</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span> has at most linear growth <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>O</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span>.</p>","PeriodicalId":13756,"journal":{"name":"International Journal of Algebra and Computation","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounding embedded singularities of Hilbert schemes of points on affine three space\",\"authors\":\"Jen-Chieh Hsiao\",\"doi\":\"10.1142/s0218196724500140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Hilbert scheme <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mstyle><mtext mathvariant=\\\"normal\\\">Hilb</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span> of <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi></math></span><span></span> points on <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span> can be expressed as the critical locus of a regular function on a smooth variety <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"cal\\\">𝒳</mi></math></span><span></span>. Recent development in birational geometry suggests a study of singularities of the pair <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi mathvariant=\\\"cal\\\">𝒳</mi><mo>,</mo><msup><mrow><mstyle><mtext mathvariant=\\\"normal\\\">Hilb</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>3</mn></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> using jet schemes. In this paper, we use a comparison between <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mstyle><mtext mathvariant=\\\"normal\\\">Hilb</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span> and the scheme <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn><mo>,</mo><mi>n</mi></mrow></msub></math></span><span></span> of three commuting <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi><mo stretchy=\\\"false\\\">×</mo><mi>n</mi></math></span><span></span> matrices to estimate the log canonical threshold of <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi mathvariant=\\\"cal\\\">𝒳</mi><mo>,</mo><msup><mrow><mstyle><mtext mathvariant=\\\"normal\\\">Hilb</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>3</mn></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. As a consequence, we see that although both <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>dim</mo><mi mathvariant=\\\"cal\\\">𝒳</mi></math></span><span></span> and <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>dim</mo><msup><mrow><mstyle><mtext mathvariant=\\\"normal\\\">Hilb</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span> have asymptotic growth <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>O</mi><mo stretchy=\\\"false\\\">(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, the largest multiplicity of any points on <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mstyle><mtext mathvariant=\\\"normal\\\">Hilb</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span> has at most linear growth <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>O</mi><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>.</p>\",\"PeriodicalId\":13756,\"journal\":{\"name\":\"International Journal of Algebra and Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Algebra and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196724500140\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Algebra and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218196724500140","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Bounding embedded singularities of Hilbert schemes of points on affine three space
The Hilbert scheme of points on can be expressed as the critical locus of a regular function on a smooth variety . Recent development in birational geometry suggests a study of singularities of the pair using jet schemes. In this paper, we use a comparison between and the scheme of three commuting matrices to estimate the log canonical threshold of . As a consequence, we see that although both and have asymptotic growth , the largest multiplicity of any points on has at most linear growth .
期刊介绍:
The International Journal of Algebra and Computation publishes high quality original research papers in combinatorial, algorithmic and computational aspects of algebra (including combinatorial and geometric group theory and semigroup theory, algorithmic aspects of universal algebra, computational and algorithmic commutative algebra, probabilistic models related to algebraic structures, random algebraic structures), and gives a preference to papers in the areas of mathematics represented by the editorial board.