仿射三空间上点的希尔伯特方案的边界嵌入奇点

IF 0.5 2区 数学 Q3 MATHEMATICS
Jen-Chieh Hsiao
{"title":"仿射三空间上点的希尔伯特方案的边界嵌入奇点","authors":"Jen-Chieh Hsiao","doi":"10.1142/s0218196724500140","DOIUrl":null,"url":null,"abstract":"<p>The Hilbert scheme <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mstyle><mtext mathvariant=\"normal\">Hilb</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span> of <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> points on <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span> can be expressed as the critical locus of a regular function on a smooth variety <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"cal\">𝒳</mi></math></span><span></span>. Recent development in birational geometry suggests a study of singularities of the pair <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi mathvariant=\"cal\">𝒳</mi><mo>,</mo><msup><mrow><mstyle><mtext mathvariant=\"normal\">Hilb</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>3</mn></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span> using jet schemes. In this paper, we use a comparison between <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mstyle><mtext mathvariant=\"normal\">Hilb</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span> and the scheme <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn><mo>,</mo><mi>n</mi></mrow></msub></math></span><span></span> of three commuting <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo stretchy=\"false\">×</mo><mi>n</mi></math></span><span></span> matrices to estimate the log canonical threshold of <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi mathvariant=\"cal\">𝒳</mi><mo>,</mo><msup><mrow><mstyle><mtext mathvariant=\"normal\">Hilb</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>3</mn></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span>. As a consequence, we see that although both <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mo>dim</mo><mi mathvariant=\"cal\">𝒳</mi></math></span><span></span> and <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mo>dim</mo><msup><mrow><mstyle><mtext mathvariant=\"normal\">Hilb</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span> have asymptotic growth <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>O</mi><mo stretchy=\"false\">(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span>, the largest multiplicity of any points on <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mstyle><mtext mathvariant=\"normal\">Hilb</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span> has at most linear growth <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>O</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span>.</p>","PeriodicalId":13756,"journal":{"name":"International Journal of Algebra and Computation","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounding embedded singularities of Hilbert schemes of points on affine three space\",\"authors\":\"Jen-Chieh Hsiao\",\"doi\":\"10.1142/s0218196724500140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Hilbert scheme <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mstyle><mtext mathvariant=\\\"normal\\\">Hilb</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span> of <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi></math></span><span></span> points on <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span> can be expressed as the critical locus of a regular function on a smooth variety <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"cal\\\">𝒳</mi></math></span><span></span>. Recent development in birational geometry suggests a study of singularities of the pair <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi mathvariant=\\\"cal\\\">𝒳</mi><mo>,</mo><msup><mrow><mstyle><mtext mathvariant=\\\"normal\\\">Hilb</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>3</mn></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> using jet schemes. In this paper, we use a comparison between <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mstyle><mtext mathvariant=\\\"normal\\\">Hilb</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span> and the scheme <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>C</mi></mrow><mrow><mn>3</mn><mo>,</mo><mi>n</mi></mrow></msub></math></span><span></span> of three commuting <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi><mo stretchy=\\\"false\\\">×</mo><mi>n</mi></math></span><span></span> matrices to estimate the log canonical threshold of <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi mathvariant=\\\"cal\\\">𝒳</mi><mo>,</mo><msup><mrow><mstyle><mtext mathvariant=\\\"normal\\\">Hilb</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>3</mn></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. As a consequence, we see that although both <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>dim</mo><mi mathvariant=\\\"cal\\\">𝒳</mi></math></span><span></span> and <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>dim</mo><msup><mrow><mstyle><mtext mathvariant=\\\"normal\\\">Hilb</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span> have asymptotic growth <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>O</mi><mo stretchy=\\\"false\\\">(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, the largest multiplicity of any points on <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mstyle><mtext mathvariant=\\\"normal\\\">Hilb</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span> has at most linear growth <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>O</mi><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>.</p>\",\"PeriodicalId\":13756,\"journal\":{\"name\":\"International Journal of Algebra and Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Algebra and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196724500140\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Algebra and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218196724500140","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

ℂ3上n个点的希尔伯特方案Hilbnℂ3可以表示为光滑品种𝒳上正则函数的临界点。双元几何的最新发展表明,可以利用喷流方案研究一对 (𝒳,Hilbnℂ3) 的奇点。在本文中,我们通过比较 Hilbnℂ3 与由三个换向 n×n 矩阵组成的方案 C3,n 来估计 (𝒳,Hilbnℂ3) 的对数规范阈值。结果我们发现,虽然 dim𝒳 和 dimHilbnℂ3 的渐近增长都是 O(n2),但 Hilbnℂ3 上任意点的最大多重性最多只有线性增长 O(n)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounding embedded singularities of Hilbert schemes of points on affine three space

The Hilbert scheme Hilbn3 of n points on 3 can be expressed as the critical locus of a regular function on a smooth variety 𝒳. Recent development in birational geometry suggests a study of singularities of the pair (𝒳,Hilbn3) using jet schemes. In this paper, we use a comparison between Hilbn3 and the scheme C3,n of three commuting n×n matrices to estimate the log canonical threshold of (𝒳,Hilbn3). As a consequence, we see that although both dim𝒳 and dimHilbn3 have asymptotic growth O(n2), the largest multiplicity of any points on Hilbn3 has at most linear growth O(n).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
66
审稿时长
6-12 weeks
期刊介绍: The International Journal of Algebra and Computation publishes high quality original research papers in combinatorial, algorithmic and computational aspects of algebra (including combinatorial and geometric group theory and semigroup theory, algorithmic aspects of universal algebra, computational and algorithmic commutative algebra, probabilistic models related to algebraic structures, random algebraic structures), and gives a preference to papers in the areas of mathematics represented by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信