数图和路径复合体的解析和雷德梅斯特扭转

IF 0.5 4区 数学 Q3 MATHEMATICS
Alexander Grigor’yan, Yong Lin, Shing-Tung Yau
{"title":"数图和路径复合体的解析和雷德梅斯特扭转","authors":"Alexander Grigor’yan, Yong Lin, Shing-Tung Yau","doi":"10.4310/pamq.2024.v20.n2.a3","DOIUrl":null,"url":null,"abstract":"We define the notions of Reidemeister torsion and analytic torsion for directed graphs by means of the path homology theory introduced by the authors in [ $\\href{https://arxiv.org/abs/1207.2834}{7}$, $\\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=3324763}{8}$, $\\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=3431683}{9}$, $\\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=3845076}{11}$]. We prove the identity of the two notions of torsions as well as obtain formulas for torsions of Cartesian products and joins of digraphs.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":"50 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytic and Reidemeister torsions of digraphs and path complexes\",\"authors\":\"Alexander Grigor’yan, Yong Lin, Shing-Tung Yau\",\"doi\":\"10.4310/pamq.2024.v20.n2.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define the notions of Reidemeister torsion and analytic torsion for directed graphs by means of the path homology theory introduced by the authors in [ $\\\\href{https://arxiv.org/abs/1207.2834}{7}$, $\\\\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=3324763}{8}$, $\\\\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=3431683}{9}$, $\\\\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=3845076}{11}$]. We prove the identity of the two notions of torsions as well as obtain formulas for torsions of Cartesian products and joins of digraphs.\",\"PeriodicalId\":54526,\"journal\":{\"name\":\"Pure and Applied Mathematics Quarterly\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pure and Applied Mathematics Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2024.v20.n2.a3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2024.v20.n2.a3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们通过作者在[$\href{https://arxiv.org/abs/1207.2834}{7}$, $\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=3324763}{8}$, $\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=3431683}{9}$, $\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=3845076}{11}$] 中引入的路径同构理论,定义了有向图的雷德梅斯特扭转(Reidemeister torsion)和解析扭转(analytic torsion)的概念。我们证明了这两个扭转概念的同一性,并得到了笛卡尔积的扭转和数图连接的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytic and Reidemeister torsions of digraphs and path complexes
We define the notions of Reidemeister torsion and analytic torsion for directed graphs by means of the path homology theory introduced by the authors in [ $\href{https://arxiv.org/abs/1207.2834}{7}$, $\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=3324763}{8}$, $\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=3431683}{9}$, $\href{https://mathscinet.ams.org/mathscinet/relay-station?mr=3845076}{11}$]. We prove the identity of the two notions of torsions as well as obtain formulas for torsions of Cartesian products and joins of digraphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
30
审稿时长
>12 weeks
期刊介绍: Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信