{"title":"开放式 $r$ 自旋不变式的镜像对称性","authors":"Mark Gross, Tyler L. Kelly, Ran J. Tessler","doi":"10.4310/pamq.2024.v20.n2.a9","DOIUrl":null,"url":null,"abstract":"We show that a generating function for open $r$-spin enumerative invariants produces a universal unfolding of the polynomial $x^r$. Further, the coordinates parametrizing this universal unfolding are flat coordinates on the Frobenius manifold associated to the Landau–Ginzburg model $(\\mathbb{C}, x^r)$ via Saito–Givental theory. This result provides evidence for the same phenomenon to occur in higher dimension, proven in the sequel $\\href{https://arxiv.org/abs/2203.02435}{[\\textrm{GKT}22]}$.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":"188 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mirror symmetry for open $r$-spin invariants\",\"authors\":\"Mark Gross, Tyler L. Kelly, Ran J. Tessler\",\"doi\":\"10.4310/pamq.2024.v20.n2.a9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that a generating function for open $r$-spin enumerative invariants produces a universal unfolding of the polynomial $x^r$. Further, the coordinates parametrizing this universal unfolding are flat coordinates on the Frobenius manifold associated to the Landau–Ginzburg model $(\\\\mathbb{C}, x^r)$ via Saito–Givental theory. This result provides evidence for the same phenomenon to occur in higher dimension, proven in the sequel $\\\\href{https://arxiv.org/abs/2203.02435}{[\\\\textrm{GKT}22]}$.\",\"PeriodicalId\":54526,\"journal\":{\"name\":\"Pure and Applied Mathematics Quarterly\",\"volume\":\"188 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pure and Applied Mathematics Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2024.v20.n2.a9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2024.v20.n2.a9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
We show that a generating function for open $r$-spin enumerative invariants produces a universal unfolding of the polynomial $x^r$. Further, the coordinates parametrizing this universal unfolding are flat coordinates on the Frobenius manifold associated to the Landau–Ginzburg model $(\mathbb{C}, x^r)$ via Saito–Givental theory. This result provides evidence for the same phenomenon to occur in higher dimension, proven in the sequel $\href{https://arxiv.org/abs/2203.02435}{[\textrm{GKT}22]}$.
期刊介绍:
Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.