乔伊斯广义库默构造中的共轭子曼形体

IF 0.5 4区 数学 Q3 MATHEMATICS
Dominik Gutwein
{"title":"乔伊斯广义库默构造中的共轭子曼形体","authors":"Dominik Gutwein","doi":"10.4310/pamq.2024.v20.n2.a7","DOIUrl":null,"url":null,"abstract":"This article constructs coassociative submanifolds in $\\mathrm{G}_2$-manifolds arising from Joyce’s generalised Kummer construction. The novelty compared to previous constructions is that these submanifolds all lie within the critical region of the $\\mathrm{G}_2$-manifold in which the metric degenerates. This forces the volume of the coassociatives to shrink to zero when the orbifold-limit is approached.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":"243 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coassociative submanifolds in Joyce's generalised Kummer constructions\",\"authors\":\"Dominik Gutwein\",\"doi\":\"10.4310/pamq.2024.v20.n2.a7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article constructs coassociative submanifolds in $\\\\mathrm{G}_2$-manifolds arising from Joyce’s generalised Kummer construction. The novelty compared to previous constructions is that these submanifolds all lie within the critical region of the $\\\\mathrm{G}_2$-manifold in which the metric degenerates. This forces the volume of the coassociatives to shrink to zero when the orbifold-limit is approached.\",\"PeriodicalId\":54526,\"journal\":{\"name\":\"Pure and Applied Mathematics Quarterly\",\"volume\":\"243 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pure and Applied Mathematics Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2024.v20.n2.a7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2024.v20.n2.a7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文构建了由乔伊斯的广义库默构造所产生的$\mathrm{G}_2$-manifold中的共协子manifolds。与之前的构造相比,本文的新颖之处在于这些子实体都位于$mathrm{G}_2$-manifold的临界区域内,在该临界区域内,度量发生退化。这就迫使共轭体的体积在接近轨道极限时收缩为零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coassociative submanifolds in Joyce's generalised Kummer constructions
This article constructs coassociative submanifolds in $\mathrm{G}_2$-manifolds arising from Joyce’s generalised Kummer construction. The novelty compared to previous constructions is that these submanifolds all lie within the critical region of the $\mathrm{G}_2$-manifold in which the metric degenerates. This forces the volume of the coassociatives to shrink to zero when the orbifold-limit is approached.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
30
审稿时长
>12 weeks
期刊介绍: Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信