{"title":"R^2$ 中的对数闵科夫斯基问题","authors":"Yude Liu, Xinbao Lu, Qiang Sun, Ge Xiong","doi":"10.4310/pamq.2024.v20.n2.a5","DOIUrl":null,"url":null,"abstract":"A necessary condition for the existence of solutions to the logarithmic Minkowski problem in $\\mathbb{R}^2$, which turns to be stronger than the celebrated subspace concentration condition, is given. The sufficient and necessary conditions for the existence of solutions to the logarithmic problem for quadrilaterals, as well as the number of solutions, are fully characterized.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":"27 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The logarithmic Minkowski problem in $R^2$\",\"authors\":\"Yude Liu, Xinbao Lu, Qiang Sun, Ge Xiong\",\"doi\":\"10.4310/pamq.2024.v20.n2.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A necessary condition for the existence of solutions to the logarithmic Minkowski problem in $\\\\mathbb{R}^2$, which turns to be stronger than the celebrated subspace concentration condition, is given. The sufficient and necessary conditions for the existence of solutions to the logarithmic problem for quadrilaterals, as well as the number of solutions, are fully characterized.\",\"PeriodicalId\":54526,\"journal\":{\"name\":\"Pure and Applied Mathematics Quarterly\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pure and Applied Mathematics Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2024.v20.n2.a5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2024.v20.n2.a5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A necessary condition for the existence of solutions to the logarithmic Minkowski problem in $\mathbb{R}^2$, which turns to be stronger than the celebrated subspace concentration condition, is given. The sufficient and necessary conditions for the existence of solutions to the logarithmic problem for quadrilaterals, as well as the number of solutions, are fully characterized.
期刊介绍:
Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.