R^2$ 中的对数闵科夫斯基问题

Pub Date : 2024-04-03 DOI:10.4310/pamq.2024.v20.n2.a5
Yude Liu, Xinbao Lu, Qiang Sun, Ge Xiong
{"title":"R^2$ 中的对数闵科夫斯基问题","authors":"Yude Liu, Xinbao Lu, Qiang Sun, Ge Xiong","doi":"10.4310/pamq.2024.v20.n2.a5","DOIUrl":null,"url":null,"abstract":"A necessary condition for the existence of solutions to the logarithmic Minkowski problem in $\\mathbb{R}^2$, which turns to be stronger than the celebrated subspace concentration condition, is given. The sufficient and necessary conditions for the existence of solutions to the logarithmic problem for quadrilaterals, as well as the number of solutions, are fully characterized.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The logarithmic Minkowski problem in $R^2$\",\"authors\":\"Yude Liu, Xinbao Lu, Qiang Sun, Ge Xiong\",\"doi\":\"10.4310/pamq.2024.v20.n2.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A necessary condition for the existence of solutions to the logarithmic Minkowski problem in $\\\\mathbb{R}^2$, which turns to be stronger than the celebrated subspace concentration condition, is given. The sufficient and necessary conditions for the existence of solutions to the logarithmic problem for quadrilaterals, as well as the number of solutions, are fully characterized.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2024.v20.n2.a5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2024.v20.n2.a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给出了$\mathbb{R}^2$中对数闵科夫斯基问题解存在的必要条件,该条件比著名的子空间集中条件更强。充分描述了四边形对数问题解存在的充分条件和必要条件以及解的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The logarithmic Minkowski problem in $R^2$
A necessary condition for the existence of solutions to the logarithmic Minkowski problem in $\mathbb{R}^2$, which turns to be stronger than the celebrated subspace concentration condition, is given. The sufficient and necessary conditions for the existence of solutions to the logarithmic problem for quadrilaterals, as well as the number of solutions, are fully characterized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信