通过对应关系实现双变代数共线性

IF 0.5 4区 数学 Q3 MATHEMATICS
Shoji Yokura
{"title":"通过对应关系实现双变代数共线性","authors":"Shoji Yokura","doi":"10.4310/pamq.2024.v20.n2.a8","DOIUrl":null,"url":null,"abstract":"A bi-variant theory $\\mathbb{B}(X,Y)$ defined for a pair $(X,Y)$ is a theory satisfying properties similar to those of Fulton–Mac Pherson’s bivariant theory $\\mathbb{B}(X \\xrightarrow{f} Y)$ defined for a morphism $f : X \\rightarrow Y$. In this paper, using correspondences we construct a bi-variant algebraic cobordism $\\Omega^{\\ast,\\sharp} (X, Y )$ such that $\\Omega^{\\ast,\\sharp}(X, pt)$ is isomorphic to Lee–Pandharipande’s algebraic cobordism of vector bundles $\\Omega \\underline{}_{\\ast,\\sharp} (X)$. In particular, $\\Omega^\\ast (X, pt) = \\Omega^{\\ast,0} (X, pt)$ is isomorphic to Levine–Morel’s algebraic cobordism $\\Omega \\underline{}_{\\ast} (X)$. Namely, $\\Omega^{\\ast,\\sharp} (X,Y)$ is a <i>bi-variant version</i> of Lee–Pandharipande’s algebraic cobordism of bundles $\\Omega_{\\ast,\\sharp} (X)$.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":"47 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A bi-variant algebraic cobordism via correspondences\",\"authors\":\"Shoji Yokura\",\"doi\":\"10.4310/pamq.2024.v20.n2.a8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bi-variant theory $\\\\mathbb{B}(X,Y)$ defined for a pair $(X,Y)$ is a theory satisfying properties similar to those of Fulton–Mac Pherson’s bivariant theory $\\\\mathbb{B}(X \\\\xrightarrow{f} Y)$ defined for a morphism $f : X \\\\rightarrow Y$. In this paper, using correspondences we construct a bi-variant algebraic cobordism $\\\\Omega^{\\\\ast,\\\\sharp} (X, Y )$ such that $\\\\Omega^{\\\\ast,\\\\sharp}(X, pt)$ is isomorphic to Lee–Pandharipande’s algebraic cobordism of vector bundles $\\\\Omega \\\\underline{}_{\\\\ast,\\\\sharp} (X)$. In particular, $\\\\Omega^\\\\ast (X, pt) = \\\\Omega^{\\\\ast,0} (X, pt)$ is isomorphic to Levine–Morel’s algebraic cobordism $\\\\Omega \\\\underline{}_{\\\\ast} (X)$. Namely, $\\\\Omega^{\\\\ast,\\\\sharp} (X,Y)$ is a <i>bi-variant version</i> of Lee–Pandharipande’s algebraic cobordism of bundles $\\\\Omega_{\\\\ast,\\\\sharp} (X)$.\",\"PeriodicalId\":54526,\"journal\":{\"name\":\"Pure and Applied Mathematics Quarterly\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pure and Applied Mathematics Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2024.v20.n2.a8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2024.v20.n2.a8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

为一对$(X,Y)$定义的双变量理论$/mathbb{B}(X,Y)$是一种满足与富尔顿-麦克-费森的双变量理论$/mathbb{B}(X \xrightarrow{f} Y)$相似的性质的理论,它为态量$f :X (右箭头 Y)$ 的态量定义。在本文中,我们利用对应关系构造了一个双变代数共线$\Omega^{ast,\sharp} (X, Y )$,使得$\Omega^{ast,\sharp}(X, pt)$与Lee-Pandharipande的向量束代数共线$\Omega \underline{}_{\ast,\sharp} (X)$同构。尤其是,$\Omega^\ast (X, pt) = \Omega^{\ast,0} (X, pt)$ 与 Levine-Morel 的代数协整 $\Omega \underline{}_{\ast} (X)$ 同构。也就是说,$Omega^{ast,\sharp} (X,Y)$ 是 Lee-Pandharipande 的代数共线束 $\Omega_{ast,\sharp} (X)$ 的双变量版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A bi-variant algebraic cobordism via correspondences
A bi-variant theory $\mathbb{B}(X,Y)$ defined for a pair $(X,Y)$ is a theory satisfying properties similar to those of Fulton–Mac Pherson’s bivariant theory $\mathbb{B}(X \xrightarrow{f} Y)$ defined for a morphism $f : X \rightarrow Y$. In this paper, using correspondences we construct a bi-variant algebraic cobordism $\Omega^{\ast,\sharp} (X, Y )$ such that $\Omega^{\ast,\sharp}(X, pt)$ is isomorphic to Lee–Pandharipande’s algebraic cobordism of vector bundles $\Omega \underline{}_{\ast,\sharp} (X)$. In particular, $\Omega^\ast (X, pt) = \Omega^{\ast,0} (X, pt)$ is isomorphic to Levine–Morel’s algebraic cobordism $\Omega \underline{}_{\ast} (X)$. Namely, $\Omega^{\ast,\sharp} (X,Y)$ is a bi-variant version of Lee–Pandharipande’s algebraic cobordism of bundles $\Omega_{\ast,\sharp} (X)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
30
审稿时长
>12 weeks
期刊介绍: Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信