{"title":"无计数 Weisfeiler-Leman 和群同构","authors":"Nathaniel A. Collins, Michael Levet","doi":"10.1142/s0218196724500103","DOIUrl":null,"url":null,"abstract":"<p>We investigate the power of counting in <span>Group Isomorphism</span>. We first leverage the count-free variant of the Weisfeiler–Leman Version I algorithm for groups [J. Brachter and P. Schweitzer, On the Weisfeiler–Leman dimension of finite groups, in <i>35th Annual ACM/IEEE Symp. Logic in Computer Scienc</i>e, eds. H. Hermanns, L. Zhang, N. Kobayashi and D. Miller, Saarbrucken, Germany, July 8–11, 2020 (ACM, 2020), pp. 287–300, doi:10.1145/3373718.3394786] in tandem with bounded non-determinism and limited counting to improve the parallel complexity of isomorphism testing for several families of groups. These families include:</p><ul><li><p>Direct products of non-Abelian simple groups.</p></li><li><p>Coprime extensions, where the normal Hall subgroup is Abelian and the complement is an <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>O</mi><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math></span><span></span>-generated solvable group with solvability class poly log log <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span>. This notably includes instances where the complement is an <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>O</mi><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math></span><span></span>-generated nilpotent group. This problem was previously known to be in <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"sans-serif\">P</mi></math></span><span></span> [Y. Qiao, J. M. N. Sarma and B. Tang, On isomorphism testing of groups with normal Hall subgroups, in <i>Proc. 28th Symp. Theoretical Aspects of Computer Science,</i> Dagstuhl Castle, Leibniz Center for Informatics, 2011), pp. 567–578, doi:10.4230/LIPIcs. STACS.2011.567], and the complexity was recently improved to <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"sans-serif\">L</mi></math></span><span></span> [J. A. Grochow and M. Levet, On the parallel complexity of group isomorphism via Weisfeiler–Leman, in <i>24th Int. Symp. Fundamentals of Computation Theory</i>, eds. H. Fernau and K. Jansen, Lecture Notes in Computer Science, Vol. 14292, September 18–21, 2023, Trier, Germany (Springer, 2023), pp. 234–247].</p></li><li><p>Graphical groups of class <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn></math></span><span></span> and exponent <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi><mo>></mo><mn>2</mn></math></span><span></span> [A. H. Mekler, Stability of nilpotent groups of class 2 and prime exponent, <i>J. Symb. Logic</i><b>46</b>(4) (1981) 781–788] arising from the CFI and twisted CFI graphs [J. -Y. Cai, M. Fürer and N. Immerman, An optimal lower bound on the number of variables for graph identification, <i>Combinatorica</i><b>12</b>(4) (1992) 389–410], respectively. In particular, our work improves upon previous results of Brachter and Schweitzer [On the Weisfeiler–Leman dimension of finite groups, in <i>35th Annual ACM/IEEE Symp. Logic in Computer Scienc</i>e, eds. H. Hermanns, L. Zhang, N. Kobayashi and D. Miller, Saarbrucken, Germany, July 8–11, 2020 (ACM, 2020), pp. 287–300, doi:10.1145/3373718.3394786].</p></li></ul><p>Notably, each of these families was previously known to be identified by the <i>counting</i> variant of the more powerful Weisfeiler–Leman Version II algorithm. We finally show that the <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>q</mi></math></span><span></span>-ary count-free pebble game is unable to even distinguish Abelian groups. This extends the result of Grochow and Levet (<i>ibid</i>), who established the result in the case of <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>q</mi><mo>=</mo><mn>1</mn></math></span><span></span>. The general theme is that some counting appears necessary to place <span>Group Isomorphism</span> into <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"sans-serif\">P</mi></math></span><span></span>.</p>","PeriodicalId":13756,"journal":{"name":"International Journal of Algebra and Computation","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Count-free Weisfeiler–Leman and group isomorphism\",\"authors\":\"Nathaniel A. Collins, Michael Levet\",\"doi\":\"10.1142/s0218196724500103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the power of counting in <span>Group Isomorphism</span>. We first leverage the count-free variant of the Weisfeiler–Leman Version I algorithm for groups [J. Brachter and P. Schweitzer, On the Weisfeiler–Leman dimension of finite groups, in <i>35th Annual ACM/IEEE Symp. Logic in Computer Scienc</i>e, eds. H. Hermanns, L. Zhang, N. Kobayashi and D. Miller, Saarbrucken, Germany, July 8–11, 2020 (ACM, 2020), pp. 287–300, doi:10.1145/3373718.3394786] in tandem with bounded non-determinism and limited counting to improve the parallel complexity of isomorphism testing for several families of groups. These families include:</p><ul><li><p>Direct products of non-Abelian simple groups.</p></li><li><p>Coprime extensions, where the normal Hall subgroup is Abelian and the complement is an <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>O</mi><mo stretchy=\\\"false\\\">(</mo><mn>1</mn><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>-generated solvable group with solvability class poly log log <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi></math></span><span></span>. This notably includes instances where the complement is an <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>O</mi><mo stretchy=\\\"false\\\">(</mo><mn>1</mn><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>-generated nilpotent group. This problem was previously known to be in <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"sans-serif\\\">P</mi></math></span><span></span> [Y. Qiao, J. M. N. Sarma and B. Tang, On isomorphism testing of groups with normal Hall subgroups, in <i>Proc. 28th Symp. Theoretical Aspects of Computer Science,</i> Dagstuhl Castle, Leibniz Center for Informatics, 2011), pp. 567–578, doi:10.4230/LIPIcs. STACS.2011.567], and the complexity was recently improved to <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"sans-serif\\\">L</mi></math></span><span></span> [J. A. Grochow and M. Levet, On the parallel complexity of group isomorphism via Weisfeiler–Leman, in <i>24th Int. Symp. Fundamentals of Computation Theory</i>, eds. H. Fernau and K. Jansen, Lecture Notes in Computer Science, Vol. 14292, September 18–21, 2023, Trier, Germany (Springer, 2023), pp. 234–247].</p></li><li><p>Graphical groups of class <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>2</mn></math></span><span></span> and exponent <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>p</mi><mo>></mo><mn>2</mn></math></span><span></span> [A. H. Mekler, Stability of nilpotent groups of class 2 and prime exponent, <i>J. Symb. Logic</i><b>46</b>(4) (1981) 781–788] arising from the CFI and twisted CFI graphs [J. -Y. Cai, M. Fürer and N. Immerman, An optimal lower bound on the number of variables for graph identification, <i>Combinatorica</i><b>12</b>(4) (1992) 389–410], respectively. In particular, our work improves upon previous results of Brachter and Schweitzer [On the Weisfeiler–Leman dimension of finite groups, in <i>35th Annual ACM/IEEE Symp. Logic in Computer Scienc</i>e, eds. H. Hermanns, L. Zhang, N. Kobayashi and D. Miller, Saarbrucken, Germany, July 8–11, 2020 (ACM, 2020), pp. 287–300, doi:10.1145/3373718.3394786].</p></li></ul><p>Notably, each of these families was previously known to be identified by the <i>counting</i> variant of the more powerful Weisfeiler–Leman Version II algorithm. We finally show that the <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>q</mi></math></span><span></span>-ary count-free pebble game is unable to even distinguish Abelian groups. This extends the result of Grochow and Levet (<i>ibid</i>), who established the result in the case of <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>q</mi><mo>=</mo><mn>1</mn></math></span><span></span>. The general theme is that some counting appears necessary to place <span>Group Isomorphism</span> into <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"sans-serif\\\">P</mi></math></span><span></span>.</p>\",\"PeriodicalId\":13756,\"journal\":{\"name\":\"International Journal of Algebra and Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Algebra and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196724500103\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Algebra and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218196724500103","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了群同构中计数的力量。我们首先利用群的 Weisfeiler-Leman 第一版算法的无计数变体 [J. Brachter and P. Schweitzer, On Weisfeiler-Leman dimension of finite groups, in 35 Annual ACM/IEEE Symposium.Brachter and P. Schweitzer, On the Weisfeiler-Leman dimension of finite groups, in 35th Annual ACM/IEEE Symp.Logic in Computer Science, eds.H. Hermanns, L. Zhang, N. Kobayashi and D. Miller, Saarbrucken, Germany, July 8-11, 2020 (ACM, 2020), pp.这些群族包括:非阿贝尔简单群的直接乘积;正态霍尔子群是阿贝尔群,而补集是可解类为 poly log log n 的 O(1)- 生成的可解群。这个问题之前已知在 P [Y. Qiao, J. M. N.] 中。Qiao, J. M. N. Sarma and B. Tang, On isomorphism testing of groups with normal Hall subgroups, in Proc.Theoretical Aspects of Computer Science, Dagstuhl Castle, Leibniz Center for Informatics, 2011), pp.STACS.2011.567],最近又将复杂度提高到了 L [J. A. Grochow and M. M. J. J. M. M.A. Grochow and M. Levet, On the parallel complexity of group isomorphism via Weisfeiler-Leman, in 24th Int.Symp.计算理论基础》,H. Fernau 和 K. Levet 编辑。H. Fernau and K. Jansen, Lecture Notes in Computer Science, Vol. 14292, September 18-21, Trier, Germany (Springer, 2023), pp.H. Mekler, Stability of nilpotent groups of class 2 and prime exponent, J. Symb.Logic46(4) (1981) 781-788] 由 CFI 和扭曲 CFI 图产生 [J. -Y.Cai, M. Fürer and N. Immerman, An optimal lower bound on the number of variables for graph identification, Combinatorica12(4) (1992) 389-410], respectively.尤其是,我们的工作改进了 Brachter 和 Schweitzer [On the Weisfeiler-Leman dimension of finite groups, in 35th Annual ACM/IEEE Symp.Logic in Computer Science, eds.H. Hermanns, L. Zhang, N. Kobayashi and D. Miller, Saarbrucken, Germany, July 8-11, 2020 (ACM, 2020), pp.最后,我们证明了 qary 无计数卵石博弈甚至无法区分阿贝尔群。这扩展了格罗霍和勒维特(Grochow and Levet)(同上)的结果,他们是在 q=1 的情况下建立这一结果的。总的主题是,要把群同构放到 P 中,似乎需要一些计数。
We investigate the power of counting in Group Isomorphism. We first leverage the count-free variant of the Weisfeiler–Leman Version I algorithm for groups [J. Brachter and P. Schweitzer, On the Weisfeiler–Leman dimension of finite groups, in 35th Annual ACM/IEEE Symp. Logic in Computer Science, eds. H. Hermanns, L. Zhang, N. Kobayashi and D. Miller, Saarbrucken, Germany, July 8–11, 2020 (ACM, 2020), pp. 287–300, doi:10.1145/3373718.3394786] in tandem with bounded non-determinism and limited counting to improve the parallel complexity of isomorphism testing for several families of groups. These families include:
Direct products of non-Abelian simple groups.
Coprime extensions, where the normal Hall subgroup is Abelian and the complement is an -generated solvable group with solvability class poly log log . This notably includes instances where the complement is an -generated nilpotent group. This problem was previously known to be in [Y. Qiao, J. M. N. Sarma and B. Tang, On isomorphism testing of groups with normal Hall subgroups, in Proc. 28th Symp. Theoretical Aspects of Computer Science, Dagstuhl Castle, Leibniz Center for Informatics, 2011), pp. 567–578, doi:10.4230/LIPIcs. STACS.2011.567], and the complexity was recently improved to [J. A. Grochow and M. Levet, On the parallel complexity of group isomorphism via Weisfeiler–Leman, in 24th Int. Symp. Fundamentals of Computation Theory, eds. H. Fernau and K. Jansen, Lecture Notes in Computer Science, Vol. 14292, September 18–21, 2023, Trier, Germany (Springer, 2023), pp. 234–247].
Graphical groups of class and exponent [A. H. Mekler, Stability of nilpotent groups of class 2 and prime exponent, J. Symb. Logic46(4) (1981) 781–788] arising from the CFI and twisted CFI graphs [J. -Y. Cai, M. Fürer and N. Immerman, An optimal lower bound on the number of variables for graph identification, Combinatorica12(4) (1992) 389–410], respectively. In particular, our work improves upon previous results of Brachter and Schweitzer [On the Weisfeiler–Leman dimension of finite groups, in 35th Annual ACM/IEEE Symp. Logic in Computer Science, eds. H. Hermanns, L. Zhang, N. Kobayashi and D. Miller, Saarbrucken, Germany, July 8–11, 2020 (ACM, 2020), pp. 287–300, doi:10.1145/3373718.3394786].
Notably, each of these families was previously known to be identified by the counting variant of the more powerful Weisfeiler–Leman Version II algorithm. We finally show that the -ary count-free pebble game is unable to even distinguish Abelian groups. This extends the result of Grochow and Levet (ibid), who established the result in the case of . The general theme is that some counting appears necessary to place Group Isomorphism into .
期刊介绍:
The International Journal of Algebra and Computation publishes high quality original research papers in combinatorial, algorithmic and computational aspects of algebra (including combinatorial and geometric group theory and semigroup theory, algorithmic aspects of universal algebra, computational and algorithmic commutative algebra, probabilistic models related to algebraic structures, random algebraic structures), and gives a preference to papers in the areas of mathematics represented by the editorial board.