{"title":"晚发性阿尔茨海默病中的 AEBP1 和 COLEC12 基因失调:脑皮层和外周血分析的启示","authors":"Mohamadreza Asadie, Ali Miri, Taleb Badri, Javad Hosseini Nejad, Javad Gharechahi","doi":"10.1007/s12031-024-02212-8","DOIUrl":null,"url":null,"abstract":"<div><p>Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by memory and cognitive impairment, often accompanied by alterations in mood, confusion, and, ultimately, a state of acute mental disturbance. The cerebral cortex is considered a promising area for investigating the underlying causes of AD by analyzing transcriptional patterns, which could be complemented by investigating blood samples obtained from patients. We analyzed the RNA expression profiles of three distinct areas of the brain cortex, including the frontal cortex (FC), temporal cortex (TC), and entorhinal cortex (EC) in patients with AD. Functional enrichment analysis was performed on the differentially expressed genes (DEGs) across the three regions. The two genes with the most significant expression changes in the EC region were selected for assessing mRNA expression levels in the peripheral blood of late-onset AD patients using quantitative PCR (qPCR). We identified eight shared DEGs in these regions, including <i>AEBP1</i> and <i>COLEC12</i>, which exhibited prominent changes in expression. Functional enrichment analysis uncovered a significant association of these DEGs with the transforming growth factor-β (<i>TGF-β</i>) signaling pathway and processes related to angiogenesis. Importantly, we established a robust connection between the up-regulation of <i>AEBP1</i> and <i>COLEC12</i> in both the brain and peripheral blood. Furthermore, we have demonstrated the potential of <i>AEBP1</i> and <i>COLEC12</i> genes as effective diagnostic tools for distinguishing between late-onset AD patients and healthy controls. This study unveils the intricate interplay between <i>AEBP1</i> and <i>COLEC12</i> in AD and underscores their potential as markers for disease detection and monitoring.</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"74 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dysregulated AEBP1 and COLEC12 Genes in Late-Onset Alzheimer’s Disease: Insights from Brain Cortex and Peripheral Blood Analysis\",\"authors\":\"Mohamadreza Asadie, Ali Miri, Taleb Badri, Javad Hosseini Nejad, Javad Gharechahi\",\"doi\":\"10.1007/s12031-024-02212-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by memory and cognitive impairment, often accompanied by alterations in mood, confusion, and, ultimately, a state of acute mental disturbance. The cerebral cortex is considered a promising area for investigating the underlying causes of AD by analyzing transcriptional patterns, which could be complemented by investigating blood samples obtained from patients. We analyzed the RNA expression profiles of three distinct areas of the brain cortex, including the frontal cortex (FC), temporal cortex (TC), and entorhinal cortex (EC) in patients with AD. Functional enrichment analysis was performed on the differentially expressed genes (DEGs) across the three regions. The two genes with the most significant expression changes in the EC region were selected for assessing mRNA expression levels in the peripheral blood of late-onset AD patients using quantitative PCR (qPCR). We identified eight shared DEGs in these regions, including <i>AEBP1</i> and <i>COLEC12</i>, which exhibited prominent changes in expression. Functional enrichment analysis uncovered a significant association of these DEGs with the transforming growth factor-β (<i>TGF-β</i>) signaling pathway and processes related to angiogenesis. Importantly, we established a robust connection between the up-regulation of <i>AEBP1</i> and <i>COLEC12</i> in both the brain and peripheral blood. Furthermore, we have demonstrated the potential of <i>AEBP1</i> and <i>COLEC12</i> genes as effective diagnostic tools for distinguishing between late-onset AD patients and healthy controls. This study unveils the intricate interplay between <i>AEBP1</i> and <i>COLEC12</i> in AD and underscores their potential as markers for disease detection and monitoring.</p></div>\",\"PeriodicalId\":652,\"journal\":{\"name\":\"Journal of Molecular Neuroscience\",\"volume\":\"74 2\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12031-024-02212-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12031-024-02212-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Dysregulated AEBP1 and COLEC12 Genes in Late-Onset Alzheimer’s Disease: Insights from Brain Cortex and Peripheral Blood Analysis
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by memory and cognitive impairment, often accompanied by alterations in mood, confusion, and, ultimately, a state of acute mental disturbance. The cerebral cortex is considered a promising area for investigating the underlying causes of AD by analyzing transcriptional patterns, which could be complemented by investigating blood samples obtained from patients. We analyzed the RNA expression profiles of three distinct areas of the brain cortex, including the frontal cortex (FC), temporal cortex (TC), and entorhinal cortex (EC) in patients with AD. Functional enrichment analysis was performed on the differentially expressed genes (DEGs) across the three regions. The two genes with the most significant expression changes in the EC region were selected for assessing mRNA expression levels in the peripheral blood of late-onset AD patients using quantitative PCR (qPCR). We identified eight shared DEGs in these regions, including AEBP1 and COLEC12, which exhibited prominent changes in expression. Functional enrichment analysis uncovered a significant association of these DEGs with the transforming growth factor-β (TGF-β) signaling pathway and processes related to angiogenesis. Importantly, we established a robust connection between the up-regulation of AEBP1 and COLEC12 in both the brain and peripheral blood. Furthermore, we have demonstrated the potential of AEBP1 and COLEC12 genes as effective diagnostic tools for distinguishing between late-onset AD patients and healthy controls. This study unveils the intricate interplay between AEBP1 and COLEC12 in AD and underscores their potential as markers for disease detection and monitoring.
期刊介绍:
The Journal of Molecular Neuroscience is committed to the rapid publication of original findings that increase our understanding of the molecular structure, function, and development of the nervous system. The criteria for acceptance of manuscripts will be scientific excellence, originality, and relevance to the field of molecular neuroscience. Manuscripts with clinical relevance are especially encouraged since the journal seeks to provide a means for accelerating the progression of basic research findings toward clinical utilization. All experiments described in the Journal of Molecular Neuroscience that involve the use of animal or human subjects must have been approved by the appropriate institutional review committee and conform to accepted ethical standards.