彩虹饱和度数值是线性的

IF 0.9 3区 数学 Q2 MATHEMATICS
Natalie Behague, Tom Johnston, Shoham Letzter, Natasha Morrison, Shannon Ogden
{"title":"彩虹饱和度数值是线性的","authors":"Natalie Behague, Tom Johnston, Shoham Letzter, Natasha Morrison, Shannon Ogden","doi":"10.1137/23m1566881","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Discrete Mathematics, Volume 38, Issue 2, Page 1239-1249, June 2024. <br/> Abstract. Given a graph [math], we say that an edge-colored graph [math] is [math]-rainbow saturated if it does not contain a rainbow copy of [math], but the addition of any nonedge in any color creates a rainbow copy of [math]. The rainbow saturation number [math] is the minimum number of edges among all [math]-rainbow saturated edge-colored graphs on [math] vertices. We prove that for any nonempty graph [math], the rainbow saturation number is linear in [math], thus proving a conjecture of Girão, Lewis, and Popielarz. In addition, we give an improved upper bound on the rainbow saturation number of the complete graph, disproving a second conjecture of Girão, Lewis, and Popielarz.","PeriodicalId":49530,"journal":{"name":"SIAM Journal on Discrete Mathematics","volume":"47 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Rainbow Saturation Number Is Linear\",\"authors\":\"Natalie Behague, Tom Johnston, Shoham Letzter, Natasha Morrison, Shannon Ogden\",\"doi\":\"10.1137/23m1566881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Discrete Mathematics, Volume 38, Issue 2, Page 1239-1249, June 2024. <br/> Abstract. Given a graph [math], we say that an edge-colored graph [math] is [math]-rainbow saturated if it does not contain a rainbow copy of [math], but the addition of any nonedge in any color creates a rainbow copy of [math]. The rainbow saturation number [math] is the minimum number of edges among all [math]-rainbow saturated edge-colored graphs on [math] vertices. We prove that for any nonempty graph [math], the rainbow saturation number is linear in [math], thus proving a conjecture of Girão, Lewis, and Popielarz. In addition, we give an improved upper bound on the rainbow saturation number of the complete graph, disproving a second conjecture of Girão, Lewis, and Popielarz.\",\"PeriodicalId\":49530,\"journal\":{\"name\":\"SIAM Journal on Discrete Mathematics\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1566881\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1566881","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 离散数学杂志》第 38 卷第 2 期第 1239-1249 页,2024 年 6 月。 摘要。给定一个图[math],如果一个边色图[math]不包含[math]的彩虹副本,但添加任何颜色的非边都会产生[math]的彩虹副本,我们就说这个边色图[math]是[math]-彩虹饱和的。彩虹饱和数[math]是[math]顶点上所有[math]-彩虹饱和边色图中最少的边数。我们证明了对于任何非空图 [math],彩虹饱和度数在 [math] 中是线性的,从而证明了 Girão、Lewis 和 Popielarz 的猜想。此外,我们还给出了完整图的彩虹饱和数的改进上界,推翻了吉朗、刘易斯和波皮拉尔兹的第二个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Rainbow Saturation Number Is Linear
SIAM Journal on Discrete Mathematics, Volume 38, Issue 2, Page 1239-1249, June 2024.
Abstract. Given a graph [math], we say that an edge-colored graph [math] is [math]-rainbow saturated if it does not contain a rainbow copy of [math], but the addition of any nonedge in any color creates a rainbow copy of [math]. The rainbow saturation number [math] is the minimum number of edges among all [math]-rainbow saturated edge-colored graphs on [math] vertices. We prove that for any nonempty graph [math], the rainbow saturation number is linear in [math], thus proving a conjecture of Girão, Lewis, and Popielarz. In addition, we give an improved upper bound on the rainbow saturation number of the complete graph, disproving a second conjecture of Girão, Lewis, and Popielarz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Discrete Mathematics (SIDMA) publishes research papers of exceptional quality in pure and applied discrete mathematics, broadly interpreted. The journal''s focus is primarily theoretical rather than empirical, but the editors welcome papers that evolve from or have potential application to real-world problems. Submissions must be clearly written and make a significant contribution. Topics include but are not limited to: properties of and extremal problems for discrete structures combinatorial optimization, including approximation algorithms algebraic and enumerative combinatorics coding and information theory additive, analytic combinatorics and number theory combinatorial matrix theory and spectral graph theory design and analysis of algorithms for discrete structures discrete problems in computational complexity discrete and computational geometry discrete methods in computational biology, and bioinformatics probabilistic methods and randomized algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信