{"title":"实阶为零的总昆兹半群、扩展和埃利奥特猜想","authors":"Qingnan An, Zhichao Liu","doi":"10.1112/plms.12595","DOIUrl":null,"url":null,"abstract":"In this paper, we exhibit two unital, separable, nuclear <span data-altimg=\"/cms/asset/541c34ab-4a78-46ee-abe9-3ced6d287802/plms12595-math-0002.png\"></span><math altimg=\"urn:x-wiley:00246115:media:plms12595:plms12595-math-0002\" display=\"inline\" location=\"graphic/plms12595-math-0002.png\">\n<semantics>\n<msup>\n<mi mathvariant=\"normal\">C</mi>\n<mo>∗</mo>\n</msup>\n${\\rm C}^*$</annotation>\n</semantics></math>-algebras of stable rank one and real rank zero with the same ordered scaled total K-theory, but they are not isomorphic with each other, which forms a counterexample to the Elliott Classification Conjecture for real rank zero setting. Thus, we introduce an additional normal condition and give a classification result in terms of the total K-theory. For the general setting, with a new invariant, the total Cuntz semigroup [2], we classify a large class of <span data-altimg=\"/cms/asset/e7e53393-6247-4338-a826-81158b3a347b/plms12595-math-0003.png\"></span><math altimg=\"urn:x-wiley:00246115:media:plms12595:plms12595-math-0003\" display=\"inline\" location=\"graphic/plms12595-math-0003.png\">\n<semantics>\n<msup>\n<mi mathvariant=\"normal\">C</mi>\n<mo>∗</mo>\n</msup>\n${\\rm C}^*$</annotation>\n</semantics></math>-algebras obtained from extensions. The total Cuntz semigroup, which distinguishes the algebras of our counterexample, could possibly classify all the <span data-altimg=\"/cms/asset/557f0fef-a2cf-4ebc-946a-e8e32479e4a7/plms12595-math-0004.png\"></span><math altimg=\"urn:x-wiley:00246115:media:plms12595:plms12595-math-0004\" display=\"inline\" location=\"graphic/plms12595-math-0004.png\">\n<semantics>\n<msup>\n<mi mathvariant=\"normal\">C</mi>\n<mo>∗</mo>\n</msup>\n${\\rm C}^*$</annotation>\n</semantics></math>-algebras of stable rank one and real rank zero.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":"6 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Total Cuntz semigroup, extension, and Elliott Conjecture with real rank zero\",\"authors\":\"Qingnan An, Zhichao Liu\",\"doi\":\"10.1112/plms.12595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we exhibit two unital, separable, nuclear <span data-altimg=\\\"/cms/asset/541c34ab-4a78-46ee-abe9-3ced6d287802/plms12595-math-0002.png\\\"></span><math altimg=\\\"urn:x-wiley:00246115:media:plms12595:plms12595-math-0002\\\" display=\\\"inline\\\" location=\\\"graphic/plms12595-math-0002.png\\\">\\n<semantics>\\n<msup>\\n<mi mathvariant=\\\"normal\\\">C</mi>\\n<mo>∗</mo>\\n</msup>\\n${\\\\rm C}^*$</annotation>\\n</semantics></math>-algebras of stable rank one and real rank zero with the same ordered scaled total K-theory, but they are not isomorphic with each other, which forms a counterexample to the Elliott Classification Conjecture for real rank zero setting. Thus, we introduce an additional normal condition and give a classification result in terms of the total K-theory. For the general setting, with a new invariant, the total Cuntz semigroup [2], we classify a large class of <span data-altimg=\\\"/cms/asset/e7e53393-6247-4338-a826-81158b3a347b/plms12595-math-0003.png\\\"></span><math altimg=\\\"urn:x-wiley:00246115:media:plms12595:plms12595-math-0003\\\" display=\\\"inline\\\" location=\\\"graphic/plms12595-math-0003.png\\\">\\n<semantics>\\n<msup>\\n<mi mathvariant=\\\"normal\\\">C</mi>\\n<mo>∗</mo>\\n</msup>\\n${\\\\rm C}^*$</annotation>\\n</semantics></math>-algebras obtained from extensions. The total Cuntz semigroup, which distinguishes the algebras of our counterexample, could possibly classify all the <span data-altimg=\\\"/cms/asset/557f0fef-a2cf-4ebc-946a-e8e32479e4a7/plms12595-math-0004.png\\\"></span><math altimg=\\\"urn:x-wiley:00246115:media:plms12595:plms12595-math-0004\\\" display=\\\"inline\\\" location=\\\"graphic/plms12595-math-0004.png\\\">\\n<semantics>\\n<msup>\\n<mi mathvariant=\\\"normal\\\">C</mi>\\n<mo>∗</mo>\\n</msup>\\n${\\\\rm C}^*$</annotation>\\n</semantics></math>-algebras of stable rank one and real rank zero.\",\"PeriodicalId\":49667,\"journal\":{\"name\":\"Proceedings of the London Mathematical Society\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/plms.12595\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12595","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们展示了两个具有相同有序标度总 K 理论的稳定秩为一、实秩为零的单元、可分离、核 C∗${rm C}^*$ 格拉斯,但它们彼此并不同构,这构成了实秩为零的艾略特分类猜想的反例。因此,我们引入了一个额外的正常条件,并给出了总 K 理论的分类结果。在一般情况下,通过新的不变式--总 Cuntz 半群[2],我们对从扩展得到的一大类 C∗$\{rm C}^*$ 算法进行了分类。总 Cuntz 半群区分了我们反例中的数组,它有可能分类所有稳定秩为一和实秩为零的 C∗${rm C}^*$ 数组。
Total Cuntz semigroup, extension, and Elliott Conjecture with real rank zero
In this paper, we exhibit two unital, separable, nuclear -algebras of stable rank one and real rank zero with the same ordered scaled total K-theory, but they are not isomorphic with each other, which forms a counterexample to the Elliott Classification Conjecture for real rank zero setting. Thus, we introduce an additional normal condition and give a classification result in terms of the total K-theory. For the general setting, with a new invariant, the total Cuntz semigroup [2], we classify a large class of -algebras obtained from extensions. The total Cuntz semigroup, which distinguishes the algebras of our counterexample, could possibly classify all the -algebras of stable rank one and real rank zero.
期刊介绍:
The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers.
The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.