Michela Egidi, Dennis Gallaun, Christian Seifert, Martin Tautenhahn
{"title":"巴拿赫空间稳定特性的充分标准","authors":"Michela Egidi, Dennis Gallaun, Christian Seifert, Martin Tautenhahn","doi":"10.1007/s00020-024-02762-x","DOIUrl":null,"url":null,"abstract":"<p>We study abstract sufficient criteria for cost-uniform open-loop stabilizability of linear control systems in a Banach space with a bounded control operator, which build up and generalize a sufficient condition for null-controllability in Banach spaces given by an uncertainty principle and a dissipation estimate. For stabilizability these estimates are only needed for a single spectral parameter and, in particular, their constants do not depend on the growth rate w.r.t. this parameter. Our result unifies and generalizes earlier results obtained in the context of Hilbert spaces. As an application we consider fractional powers of elliptic differential operators with constant coefficients in <span>\\(L_p(\\mathbb {R}^d)\\)</span> for <span>\\(p\\in [1,\\infty )\\)</span> and thick control sets.</p>","PeriodicalId":13658,"journal":{"name":"Integral Equations and Operator Theory","volume":"31 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sufficient Criteria for Stabilization Properties in Banach Spaces\",\"authors\":\"Michela Egidi, Dennis Gallaun, Christian Seifert, Martin Tautenhahn\",\"doi\":\"10.1007/s00020-024-02762-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study abstract sufficient criteria for cost-uniform open-loop stabilizability of linear control systems in a Banach space with a bounded control operator, which build up and generalize a sufficient condition for null-controllability in Banach spaces given by an uncertainty principle and a dissipation estimate. For stabilizability these estimates are only needed for a single spectral parameter and, in particular, their constants do not depend on the growth rate w.r.t. this parameter. Our result unifies and generalizes earlier results obtained in the context of Hilbert spaces. As an application we consider fractional powers of elliptic differential operators with constant coefficients in <span>\\\\(L_p(\\\\mathbb {R}^d)\\\\)</span> for <span>\\\\(p\\\\in [1,\\\\infty )\\\\)</span> and thick control sets.</p>\",\"PeriodicalId\":13658,\"journal\":{\"name\":\"Integral Equations and Operator Theory\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integral Equations and Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00020-024-02762-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integral Equations and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00020-024-02762-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Sufficient Criteria for Stabilization Properties in Banach Spaces
We study abstract sufficient criteria for cost-uniform open-loop stabilizability of linear control systems in a Banach space with a bounded control operator, which build up and generalize a sufficient condition for null-controllability in Banach spaces given by an uncertainty principle and a dissipation estimate. For stabilizability these estimates are only needed for a single spectral parameter and, in particular, their constants do not depend on the growth rate w.r.t. this parameter. Our result unifies and generalizes earlier results obtained in the context of Hilbert spaces. As an application we consider fractional powers of elliptic differential operators with constant coefficients in \(L_p(\mathbb {R}^d)\) for \(p\in [1,\infty )\) and thick control sets.
期刊介绍:
Integral Equations and Operator Theory (IEOT) is devoted to the publication of current research in integral equations, operator theory and related topics with emphasis on the linear aspects of the theory. The journal reports on the full scope of current developments from abstract theory to numerical methods and applications to analysis, physics, mechanics, engineering and others. The journal consists of two sections: a main section consisting of refereed papers and a second consisting of short announcements of important results, open problems, information, etc.