玄武岩、霞石、硅碳酸盐岩和反矽卡岩的形成:Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-O2-CO2 体系中的碳酸盐岩和硅酸盐相平衡

IF 3.5 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Michael Anenburg, Jesse B. Walters
{"title":"玄武岩、霞石、硅碳酸盐岩和反矽卡岩的形成:Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-O2-CO2 体系中的碳酸盐岩和硅酸盐相平衡","authors":"Michael Anenburg,&nbsp;Jesse B. Walters","doi":"10.1007/s00410-024-02109-0","DOIUrl":null,"url":null,"abstract":"<div><p>Silicocarbonatites are carbonatite rocks containing &gt; 20% silicate minerals. Their formation is not well understood due to low silica solubility in carbonatite melts and negligible amounts of silicate minerals on carbonatite melt cotectics at upper crustal conditions. We explore whether silicocarbonatites can be thought of as antiskarns: rocks formed by leaching of SiO<sub>2</sub> from siliceous wall rocks by carbonatite melts, and its deposition as solid silicate minerals by reaction with chemical components already present in the carbonatite melt. Solid state thermodynamic modelling at 1–5 kbar and 500–800 °C predicts that calcite–dolomite–magnetite assemblages will transform to dolomite-free silicocarbonatites with an increase in silica contents. In sodic systems, the formation of aegirine and alkali amphiboles suppresses silica activity despite elevated silica contents. Therefore, dolomite remains stable, but Fe<sup>3+</sup> is consumed, firstly from magnetite breakdown, and secondly by coupled Fe oxidation and reduction of CO<sub>2</sub> to CO, CH<sub>4</sub>, and graphite, particularly at higher pressures. Despite a net increase in Fe<sup>3+</sup>/Fe<sup>2+</sup>, the system evolves to increasingly lower oxygen fugacity. In aluminous systems, nepheline indicates high temperatures whereas alkali feldspars form at lower temperatures. Modelling of potassic systems demonstrates stability of mostly phlogopite-rich biotites, leading to Fe<sup>2+</sup> increase in all other carbonate and silicate phases. We find that perthites are expected in high pressures whereas two feldspars are more likely in lower pressures.</p><p>Aspects of the clinopyroxene natural compositional trend (diopside to hedenbergite to aegirine) of carbonatite systems can be explained by silica contamination. Ferrous clinopyroxenes typically require low alumina and are predicted in potassic or low temperature sodic systems, primarily at mid to high pressures. Silica contamination permits the formation of silicocarbonatite-like assemblages in a way that is not limited by SiO<sub>2</sub> solubility in carbonatite melts. Glimmerites and clinopyroxene-rich rocks (such as the ijolite series) that often occur around carbonatite rocks at the contact with silica-oversaturated wall rocks can be explained as the extreme end of silica contamination of carbonatite melts. Therefore, these clinopyroxenites and glimmerites can form solely via metasomatic processes without the presence of a silicate melt.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"179 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00410-024-02109-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Metasomatic ijolite, glimmerite, silicocarbonatite, and antiskarn formation: carbonatite and silicate phase equilibria in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–O2–CO2\",\"authors\":\"Michael Anenburg,&nbsp;Jesse B. Walters\",\"doi\":\"10.1007/s00410-024-02109-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Silicocarbonatites are carbonatite rocks containing &gt; 20% silicate minerals. Their formation is not well understood due to low silica solubility in carbonatite melts and negligible amounts of silicate minerals on carbonatite melt cotectics at upper crustal conditions. We explore whether silicocarbonatites can be thought of as antiskarns: rocks formed by leaching of SiO<sub>2</sub> from siliceous wall rocks by carbonatite melts, and its deposition as solid silicate minerals by reaction with chemical components already present in the carbonatite melt. Solid state thermodynamic modelling at 1–5 kbar and 500–800 °C predicts that calcite–dolomite–magnetite assemblages will transform to dolomite-free silicocarbonatites with an increase in silica contents. In sodic systems, the formation of aegirine and alkali amphiboles suppresses silica activity despite elevated silica contents. Therefore, dolomite remains stable, but Fe<sup>3+</sup> is consumed, firstly from magnetite breakdown, and secondly by coupled Fe oxidation and reduction of CO<sub>2</sub> to CO, CH<sub>4</sub>, and graphite, particularly at higher pressures. Despite a net increase in Fe<sup>3+</sup>/Fe<sup>2+</sup>, the system evolves to increasingly lower oxygen fugacity. In aluminous systems, nepheline indicates high temperatures whereas alkali feldspars form at lower temperatures. Modelling of potassic systems demonstrates stability of mostly phlogopite-rich biotites, leading to Fe<sup>2+</sup> increase in all other carbonate and silicate phases. We find that perthites are expected in high pressures whereas two feldspars are more likely in lower pressures.</p><p>Aspects of the clinopyroxene natural compositional trend (diopside to hedenbergite to aegirine) of carbonatite systems can be explained by silica contamination. Ferrous clinopyroxenes typically require low alumina and are predicted in potassic or low temperature sodic systems, primarily at mid to high pressures. Silica contamination permits the formation of silicocarbonatite-like assemblages in a way that is not limited by SiO<sub>2</sub> solubility in carbonatite melts. Glimmerites and clinopyroxene-rich rocks (such as the ijolite series) that often occur around carbonatite rocks at the contact with silica-oversaturated wall rocks can be explained as the extreme end of silica contamination of carbonatite melts. Therefore, these clinopyroxenites and glimmerites can form solely via metasomatic processes without the presence of a silicate melt.</p></div>\",\"PeriodicalId\":526,\"journal\":{\"name\":\"Contributions to Mineralogy and Petrology\",\"volume\":\"179 5\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00410-024-02109-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions to Mineralogy and Petrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00410-024-02109-0\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00410-024-02109-0","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

硅碳酸盐岩是含有20%硅酸盐矿物的碳酸盐岩。由于硅在碳酸盐岩熔体中的溶解度很低,而且在上地壳条件下碳酸盐岩熔体共晶上的硅酸盐矿物含量微乎其微,因此人们对它们的形成还不甚了解。我们探讨了是否可将硅碳酸盐岩视为反碳酸盐岩:即碳酸盐岩熔体从硅质壁岩中沥滤二氧化硅,并与碳酸盐岩熔体中已有的化学成分反应沉积为固态硅酸盐矿物而形成的岩石。根据 1-5 千巴和 500-800 °C的固态热力学模型预测,随着二氧化硅含量的增加,方解石-白云石-磁铁矿集合体将转变为不含白云石的硅碳酸盐岩。在钠盐体系中,尽管二氧化硅含量升高,但黝帘石和碱闪石的形成抑制了二氧化硅的活性。因此,白云石保持稳定,但Fe3+被消耗,首先是磁铁矿分解,其次是Fe氧化和CO2还原成CO、CH4和石墨,尤其是在较高压力下。尽管 Fe3+/Fe2+ 出现净增长,但系统的氧逸度却越来越低。在铝质系统中,霞石表明温度较高,而碱性长石则在较低温度下形成。对钾盐体系的建模表明,富含辉绿岩的生物橄榄石具有稳定性,从而导致所有其他碳酸盐和硅酸盐相中的 Fe2+ 增加。我们发现,在高压下预计会出现透辉石,而在低压下则更有可能出现两种长石。碳酸盐岩体系的霞石天然成分趋势(透辉石到辉长岩再到埃吉林石)的某些方面可以用二氧化硅污染来解释。铁闪长岩通常需要较低的氧化铝,在钾盐或低温钠长岩体系中,主要是在中高压下,铁闪长岩会被预测出来。二氧化硅污染允许形成类似于硅碳酸盐岩的集合体,而不受碳酸盐岩熔体中二氧化硅溶解度的限制。在碳酸盐岩周围与二氧化硅过饱和壁岩接触处经常出现的霞石和富含倩辉石的岩石(如羿辉石系列),可以解释为碳酸盐岩熔体二氧化硅污染的极端。因此,这些倩辉石和霞石可以在没有硅酸盐熔体存在的情况下,仅通过变质过程形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Metasomatic ijolite, glimmerite, silicocarbonatite, and antiskarn formation: carbonatite and silicate phase equilibria in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–O2–CO2

Metasomatic ijolite, glimmerite, silicocarbonatite, and antiskarn formation: carbonatite and silicate phase equilibria in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–O2–CO2

Silicocarbonatites are carbonatite rocks containing > 20% silicate minerals. Their formation is not well understood due to low silica solubility in carbonatite melts and negligible amounts of silicate minerals on carbonatite melt cotectics at upper crustal conditions. We explore whether silicocarbonatites can be thought of as antiskarns: rocks formed by leaching of SiO2 from siliceous wall rocks by carbonatite melts, and its deposition as solid silicate minerals by reaction with chemical components already present in the carbonatite melt. Solid state thermodynamic modelling at 1–5 kbar and 500–800 °C predicts that calcite–dolomite–magnetite assemblages will transform to dolomite-free silicocarbonatites with an increase in silica contents. In sodic systems, the formation of aegirine and alkali amphiboles suppresses silica activity despite elevated silica contents. Therefore, dolomite remains stable, but Fe3+ is consumed, firstly from magnetite breakdown, and secondly by coupled Fe oxidation and reduction of CO2 to CO, CH4, and graphite, particularly at higher pressures. Despite a net increase in Fe3+/Fe2+, the system evolves to increasingly lower oxygen fugacity. In aluminous systems, nepheline indicates high temperatures whereas alkali feldspars form at lower temperatures. Modelling of potassic systems demonstrates stability of mostly phlogopite-rich biotites, leading to Fe2+ increase in all other carbonate and silicate phases. We find that perthites are expected in high pressures whereas two feldspars are more likely in lower pressures.

Aspects of the clinopyroxene natural compositional trend (diopside to hedenbergite to aegirine) of carbonatite systems can be explained by silica contamination. Ferrous clinopyroxenes typically require low alumina and are predicted in potassic or low temperature sodic systems, primarily at mid to high pressures. Silica contamination permits the formation of silicocarbonatite-like assemblages in a way that is not limited by SiO2 solubility in carbonatite melts. Glimmerites and clinopyroxene-rich rocks (such as the ijolite series) that often occur around carbonatite rocks at the contact with silica-oversaturated wall rocks can be explained as the extreme end of silica contamination of carbonatite melts. Therefore, these clinopyroxenites and glimmerites can form solely via metasomatic processes without the presence of a silicate melt.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Contributions to Mineralogy and Petrology
Contributions to Mineralogy and Petrology 地学-地球化学与地球物理
CiteScore
6.50
自引率
5.70%
发文量
94
审稿时长
1.7 months
期刊介绍: Contributions to Mineralogy and Petrology is an international journal that accepts high quality research papers in the fields of igneous and metamorphic petrology, geochemistry and mineralogy. Topics of interest include: major element, trace element and isotope geochemistry, geochronology, experimental petrology, igneous and metamorphic petrology, mineralogy, major and trace element mineral chemistry and thermodynamic modeling of petrologic and geochemical processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信